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EM field of point charge moving at constant velocity ∗

Start with Maxwell’s equations:

−→∇.
−→
D = ρ,

−→∇.
−→
H = 0,

−→∇ ×−→E + ∂t
−→
B = 0, and

−→∇ ×−→H − ∂t
−→
D =

−→
J .

Write in terms of electromagnetic potentials,
−→
A and Φ:

−→
B =

−→∇ ×−→A ⇒ −→∇ × (
−→
E + ∂t

−→
A) = 0 ⇒ −→

E = −−→∇Φ− ∂t
−→
A

1

µ

−→∇ ×−→B − ε∂t
−→
E =

−→
J ⇒ −→∇ ×−→B − µε∂t

−→
E = µ

−→
J

⇒ −→∇ × (
−→∇ ×−→A) + µε(

−→∇∂tΦ + ∂2
t
−→
A) = µ

−→
J

Note
−→∇ × (

−→∇ ×−→A) =
−→∇(

−→∇.
−→
A)−∇2−→A

∗for pretty movies of moving charge check Shintake-san’s homepage SCSS-FEL:
http://www-xfel.spring8.or.jp
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−∇2−→A +
−→∇(

−→∇.
−→
A + µε∂tΦ) + µε∂2

t
−→
A = µ

−→
J

−→∇.
−→
A + µε∂tΦ = 0 in Lorenz gauge.

∇2−→A − µε∂2
t
−→
A = −µ

−→
J [JDJ, Eq. (6.16)] (1)

−→∇.
−→
D = ρ ⇒ −∇2Φ− ∂t

−→∇ .
−→
A =

ρ

ε

∇2−→Φ − µε∂2
t Φ = −ρ

ε
[JDJ, Eq. (6.15)] (2)

For a source moving at constant velocity, −→v : ρ = ρ(−→x − −→v t) and−→
J = −→v ρ(−→x −−→v t). We then have to solve a set of inhomogeneous

d’Alembert equations: ¤f = g(−→x −−→v t).
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Consider the case −→v = vẑ ⇒ f(−→x − −→v t) = (x, y, z − vt) = f(x, y, ζ)

with ζ ≡ z − vt. Then

∂zf → ∂ζ

∂z
∂ζf = ∂ζf (3)

∂tf → ∂ζ

∂t
∂ζf = −v∂ζf (4)

⇒ ¤f →
(
∂2

x + ∂2
y + ∂2

ζ − µεv2∂2
ζ

)
f =

(
∂2

x + ∂2
y + γ−2∂2

ζ

)
f. (5)

with γ ≡ 1√
1−µεv2

. Let z′ = γζ ⇒ ∂ζ = ∂z′
∂ζ ∂z′ = γ∂z′ :

(
∂2

x + ∂2
y + ∂2

z′
)

f(x, y, γ−1z′) = g(x, y, γ−1z′). (6)

Point charge ⇒ ρ(−→x − −→v t) → δ(x)δ(y)δ(γ−1z′) = γδ(x)δ(y)δ(z′) =

γδ(−→x ′).
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Results:−→
A → Aẑ (Ax = Ay = 0);

∇2
x′A = −γµqvδ(

−→
x′), ∇2

x′Φ = −γ
q

ε
δ(
−→
x′). (7)

Solve by inspection:

∇2
x′


 1

|−→x′ |


 = −4πδ(

−→
x′) ⇒

{
A = γµ

4π
qv
R ,

Φ = γ
4πε

q
R,

(8)

where R ≡
√

x2 + y2 + γ2(z − vt)2.

Now we can calculate
−→
E = −−→∇Φ− ∂t

−→
A :

−→
E = − γq

4πε
(
−→∇ + µεv∂tẑ)

1

R

=
γq

4πεR3

[
xx̂ + yŷ + γ2(z − vt)(1− µεv2)ẑ

]
(9)

5



−→
E =

γq

4πεR3 [xx̂ + yŷ + (z − vt)ẑ] (10)

Convert to spherical coordinates:

x2 + y2 = r2 sin2 θ, z − vt = r cos θ.

⇒ R2 = r2(sin2 θ + γ2 cos2 θ)

= γ2r2
(
1 +

1− γ2

γ2
sin2 θ

)
= γ2r2(1− µεv2 sin2 θ),

⇒ E =
γq

4πε

r

γ3r3(1− µεv2 sin2 θ)3/2

=
q

4πεr2
1− µεv2

(1− µεv2 sin2 θ)3/2
. (11)
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Note: In vacuum, take µε → µ0ε0 = c−2, and then

−→
E =

q

4πεr2

−→r
γ2(1− β2 sin2 θ)3/2

. [JDJ, Eq. (11.154)] (12)

Note that E(π/2)/E(0) = γ3 ⇒ field lines are “squashed” orthogo-

nal to the direction of motion.

Also we can find
−→
B =

−→∇ ×−→A :

−→
A = µεΦ−→v ⇒ −→

B = µε
−→∇ × (Φ−→v ) = µε[

−→∇Φ×−→v + Φ
−→∇ ×−→v ]

⇒ −→
B = µε

−→∇Φ×−→v .

−→v ×−→E = −−→v × (
−→∇Φ + ∂t

−→
A) =

−→∇Φ×−→v .

−→
B = µε−→v ×−→E , or

−→
B =

µ

4π

γq

R3
−→v (xŷ − yx̂). (13)
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Further reductions [toward JDJ Eq. (11.152)]:

−→
E =

q

4πε0r2
r̂

γ2(1− β2 sin2 θ)3/2
(14)

sin θ = b
r = b√

b2+v2t2
.

1− β2 sin2 θ = 1− β2b2

b2 + (vt)2
=

b2 + v2t2 − β2b2

b2 + v2t2
=

(1− β2)b2 + v2t2

b2 + v2t2

1− β2 sin2 θ =
b2 + γ2v2t2

γ2r2
⇒ γr

√
1− β2 sin2 θ =

√
b2 + γ2v2t2

Finally

−→
E =

q

4πε0

γ−→r
(b2 + γ2v2t2)3/2

⇒ −→
E⊥ =

q

4πε0

γbx̂

(b2 + γ2v2t2)3/2
. (15)

8



−0.5 0 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−8

ξ

E
⊥
 (

V
/m

)

γ=1

γ=10

γ=1γ=1

−0.5 0 0.5
0

1

2

3

4
x 10

−7

ξ
E

|| (
V

/m
) γ=10

γ=1

9



Consider a charge q0 comoving with q at velocity −→v . The force

imparted to q0 by q is

F = q0(
−→
E +−→v ×−→B )

= q0[
−→
E + µε−→v × (−→v ×−→E )]

⇒ −→
F = q0

[
(1− µεv2)

−→
E + µεv2Ezẑ

]

= q0

(
1

γ2

−→
E +

γ2 − 1

γ2
Ezẑ

)
= q0

[
1

γ2
(
−→
E − Ezẑ) + Ezẑ

]

⇒ −→
F = q0

[
1

γ2

−→
E⊥ +

−→
E ‖

]
(16)

The self-magnetic field of q cancels its self-electric field to within a

factor 1/γ2.
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The squashing of the E-field of a moving charge, as it corresponds

to the equation of motion, is suggestive of the Lorentz contraction,

and thus indicative that electrodynamics is invariant under Lorentz

transformations.

Invariance of proper time:

spherical waves propagate such that
(

dx
dt

)2
+

(
dy
dt

)2
+

(
dz
dt

)2
= c2.

If c is the same in all inertial reference frames (postulate), then
(

dx′

dt′

)2

+

(
dy′

dt′

)2

+

(
dz′

dt′

)2

= c2
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So, we write:

c2dt2 − dx2 − dy2 − dz2 = 0 for photons. (17)

This holds true in any inertial coordinate system. More generally

we can define the proper time:

dτ2 ≡ dt2 − 1

c2
(dx2 + dy2 + dz2). (18)

In SR, the proper time is an invariant – all inertial observers measure

the same dτ . Note that:

dτ2 = dt2(1− β2) =
1

γ2
dt2; (19)

−→
β ≡ 1

c
−→v ; −→v = velocity measured in lab frame (O), dt = period

between “ticks” of clock in lab frame.

When −→v = 0, dτ = dt ⇒ dτ = period between “ticks” of clock

comoving with O′. Every inertial observer measure the same value

for this time interval: it is a scalar – a fixed physical quantity!
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x

z

y

O

x’

y’

z’

O’

particle in O 
emits light

spherical waves propagate

v of O’ measured by O

left: notation for previous slides. right: light cone, [AB] is time-like

[AC] is space-like.
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If δt represents the period between ticks of O′’s clock, then O sees
it ticks with period:

dt = γδt (20)

This is “time dilatation”: O thinks O′’s clock runs slow.
Minkowski metric and Lorentz transformations:
Let x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z [so −→x i ≡ −→

X (i=1,2,3)]. Then we
can write:

ds2 = gαβdxαdxβ (21)

with α, β = 0,1,2,3 and gαβ is the Minkowski metric:

gαβ =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (22)

standard convention: Use Greek indices to represent sums from 0-3
and Latin indices for sum from 1-3.
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The Lorentz transformation matrix from stationary observer O to

moving observer O′ is the “boost matrix” [JDJ, Eq.(11.98)] (Λα
γΛβ

δ gαβ =

gγδ:

Λν
µ =




γ −γβx −γβy −γβz

−γβx 1 +
(

βx
β

)2
(γ − 1)

βxβy

β2 (γ − 1) βxβz
β2 (γ − 1)

−γβy
βxβy

β2 (γ − 1) 1 +
(

βy
β

)2
(γ − 1)

βyβz

β2 (γ − 1)

−γβz
βxβz
β2 (γ − 1)

βyβz

β2 (γ − 1) 1 +
(

βz
β

)2
(γ − 1)




,(23)

provided the coordinates of O and O′ are aligned. The the Lorentz

transformation from O and O′ is:

x′α = Λα
βxβ. (24)

Note Λα
β = ∂x′α

∂xβ . If the coordinate axes are not aligned then the

transformation is the product of Λα
β and a rotation matrix.
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The principle of SR is : All laws of physics must be invariant un-

der Lorentz transformations. “Invariant” ↔ Laws retain the same

mathematical form and numerical constant (scalar) retain the same

value.

Particle dynamics in SR

Define the “4-velocity”: uα ≡ dxα

dτ = cdxα

ds :

u0 = c
dt

dτ
= γc and ui =

1

c

dxi

dτ
= c

dt

dτ

dxi

dt
= cγβi (25)

Then

uαuα = gαβuβuα = γ2 − γ2β2 = c2 (26)

is an invariant.
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Moreover since dτ is an invariant and xα conforms to Lorentz trans-

formation, then

u′α = Λα
βuβ (27)

⇒ uα satisfies the Principle of SR.

Define the 4-momentum of a particle:

Pα ≡ muα (28)

⇒ P0 = γmc = E/c, P i = pi; E = total energy, pi = ordinary

3-momentum, m = particle’s rest mass. Then

PαPα = m2uαuα = m2c2 = E/c2 (29)

is an invariant. The fundamental dynamical law for particle interac-

tions in SR is that 4-momentum is conserved in any Lorentz frame.
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Note that

P ′α = Λα
βPβ (30)

also one has:

PαPα = gαβPβPα = E2/c2 − p2 (31)

E2/c2 − p2 = (mc)2 (32)

⇒ E =
√

(pc)2 + (mc2)2.

The kinetic energy of a particle is T = E −mc2:

T =
√

(pc)2 + (mc2)2 −mc2 (33)
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Example: Consider the reaction (one neutron at rest)

n + n → n + n + n + n̄

What is the minimum required energy for the incoming n that will

enable the reaction to proceed?

At threshold the four neutron are at rest in the lab frame, so that

the 4-momentum conservation requires:

Pα
1 + Pα

2 = Pα
f (34)

⇒ (Pα
1 + Pα

2 )(P1α + P2α) = Pα
f Pfα = 16(mnc)2

Pα
1 P1α + 2Pα

1 P2α + Pα
2 P2α = 2(mnc)2 + 2Pα

1 P2α

⇒ Pα
1 P2α = 7(mnc)2. (35)

Pα
1 P2α = gαβPα

1 P
β
2 = g00P0

1 P0
2 = mncE

c

E = 7mnc2. (36)
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Photon emission and absorption:

φ

θ
RA

a e

p

ua

Let uα
e,a = 4-velocity of emitter, absorber, respectively. Ee,a = pho-

ton energy measured by emitter, absorber, respectively.
Pα = 4-momentum of photon.

Then look at

Pαuα = gαβPβuα

= P0u0 − P iui = cP0 = E.

1st term u0 = c, 2nd term ui = 0 in either emitter’s or absorber’s
frame.
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So E = pαuα is the photon energy measured by an observer with

4-velocity uα. The expression is the same in any frame, including

accelerating frame! So:

Ee = Pαuα
e and, Ea = Pαuα

a

Example: “Absorber” is rotating with angular velocity Ω on a circle

of radius RA. Emitter is stationary – Let’s find Ea/Ee

In emitter’s frame: c2dτ = gαβdxαdxβ, the emitter is stationary so

uα
e = (c,0,0,0).

In absorber frame:

c2(dτ)2 = gαβdxαdxβ

= c2dt2 − v2dt2 = c2dt2 −R2
Adφ2

dτ2 = dt2 − R2
A

c2
dφ2 (37)
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From previous slide (two slides ago) we have:

Ea

Ee
=

Pαuα
a

Pαuα
e

=
P0u0

a −−→p
−→
ui

a

P0c

=
P0u0

α − |−→p ||
−→
ui

a| cos θ

P0c
(38)

But cos θ = sinφ, and for photons PαPα = (P0)2 − |−→P |2 = 0 ⇒
|−→P | = P0. Thus

Ea

Ee
=

u0
a − |−→u a| sinφ

c
. (39)

But,

|−→u a| = RA
dφ

dτ
=

RAΩ√
1− (RAΩ/c)2

; u0
a =

c√
1− (RAΩ/c)2

(40)
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Ea

Ee
=

λe

λa
⇒ λe

λa
=

1− (RAΩ/c) sinφ√
1− (RAΩ/c)2

(41)

Doppler shift (φ = 90◦):

λe

λa
=

1− (RAΩ/c)√
1− (RAΩ/c)2

=

√√√√1− (RAΩ/c)

1 + (RAΩ/c)
(42)
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Covariance of Electrodynamics

We wish to proceed in keeping with Jackson’s notation, which in-

volves switching from SI units to Gaussian units.

SI G

−→∇.
−→
D = ρ

−→∇.
−→
D = 4πρ−→∇ ×−→H − ∂t

−→
D =

−→
J

−→∇ ×−→H − 1
c∂t
−→
D = 4π

c

−→
J−→∇ ×−→E + ∂t

−→
B = 0

−→∇ ×−→E + 1
c∂t
−→
B = 0−→∇−→B = 0

−→∇−→B = 0−→
F = q(

−→
E +−→v ×−→B ) = 0

−→
F = q(

−→
E +

−→v
c ×

−→
B )

(43)

Conversions:−→
E G√
4πε0

=
−→
E SI;

√
ε0
4π

−→
DG =

−→
DSI;

√
4πε0ρG(

−→
J G, qG) = ρSI(

−→
J SI , qSI);

√
µ0
4π

−→
B G =

−→
B SI;

−→
HG√
4πµ0

=
−→
HSI; ε0εG = εSI; µ0µG = µSI; c =

(µ0ε0)
−1/2.
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As one check, look at the Lorentz force:

−→
F G = qG(

−→
E G +

1

c
−→v ×−→B G)

⇒ −→
F SI =

qSI

√
4πε0

[√
4πε0

−→
E SI +

√
µ0ε0

−→v ×
√

4π

µ0

−→
B SI

]

= qSI(
−→
E SI +−→v ×−→B SI).

The conversion from “Maxwell G” to “Maxwell SI” works the same

way. So we do have a prescription to go from Gaussian results to

SI results and vice versa.
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Current density as a 4-vector:
Consider a system of particles with positions −→x n(t) and charges qn.
The current and charge densities are:

−→
J (−→x , t) =

∑
n

qnδ3(−→x −−→x n(t))
−→̇
xn(t),

ρ(−→x , t) =
∑
n

qnδ3(−→x −−→x n(t))

Note that for any smooth function f(−→x ), δ3 acts as:
∫ ∞
−∞

f(−→x )δ3(−→x −−→y ) = f(−→y ) (44)

if we define J0 ≡ cρ and J i(−→x ) =
∑

n qnδ3(xi − xi
n(t))dtx

i
n(t), then

using δ4 function we can write:

Jα(x) =
∫ ∑

n
qnδ4(xα − xα

n(t))dx0 dxα
n(t)

dt
(45)

Jα is a function of xα → it is a Lorentz invariant; Jα is a 4-vector.
Jα ≡ (cρ,

−→
J ). Also note Jα ≡ ρuα
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Equation of charge continuity:

−→∇ .
−→
J (−→x , t) =

∑
n

qn
∂

∂xi
δ3(−→x −−→x n(t))

dxi
n(t)

dt

= −
∑
n

qn
∂

∂xi
n
δ3(−→x −−→x n(t))

dxi
n(t)

dt

= −
∑
n

qn∂tδ
3(−→x −−→x n(t))

= −∂tρ(
−→x , t) = −∂0[cρ(

−→x , t)]. (46)

So the equation of charge continuity writes as ∂αJα = 0

27



4-gradient

In the previous slide we use the operator ∂α. It is defined as

∂α ≡ ∂

∂xα
. (47)

This operator transforms as:

∂′µ =
∂

∂xµ
=

∂

∂xν

∂xν

∂x′µ
= (Λ−1)ν

µ
∂

∂xν
= (Λ−1)ν

µ
∂ν

.
(48)

Note that ∂µ = (∂0,
−→∇).

We can ”upper” the indice and define

∂µ = gµν∂ν = (∂0,−−→∇) (49)

Finally we can define the d’Alembertian: ¤ ≡ ∂α∂α.
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Potential as a 4-vector:

Aα ≡ (φ,
−→
A) (50)

Lorentz Gauge then write ∂αAα = 0. We also have

¤Aα =
4π

c
Jα, (51)

or in SI units

¤Aα = µ0Jα, [SI] (52)

this is the equation we wrote when deriving the field induced by a

charge moving at constant velocity.
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Returning to Maxwell Equation
Define the matrix Fαβ ≡ ∂αAβ − ∂βAα = gαδ∂δA

β − gβδ∂δA
α :

Fαβ =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 (53)

Look at:
∂αFαβ = ∂0F0β + ∂1F1β + ∂2F2β + ∂3F3β:

∂αFα0 = ∂0F00 + ∂1F10 + ∂2F20 + ∂3F30

= ∂iE
i =

−→∇.
−→
E = 4πρ =

4π

c
J0. (54)

Similarly,

∂αFα1 = ∂0F01 + ∂1F11 + ∂2F21 + ∂3F31

=
1

c
∂t(−Ex) + ∂x(0) + ∂y(−Bz)− ∂z(By) = −1

c
∂t(Ex) + [

−→∇ ×−→B ]x

= [
−→∇ ×−→B ]x − 1

c
∂tEx =

4π

c
J1 (55)

30



...The same for component 2, and 3. So we cast these equations

under:

∂αFαβ =
4π

c
Jβ, (56)

This corresponds to the inhomogeneous Maxwell’s equations. In SI

units Fαβ is obtained by replacing
−→
E by

−→
E /c.

How do we get the homogenous Maxwell’s equations?

Let’s introduce the Levi-Civita (rank 4) tensor as:

εαβγδ =





+1 ifα, β, γ, δ are even permutation of 0,1,2,3
−1 ifα, β, γ, δ are odd permutation of 0,1,2,3
0 otherwise

, (57)

and consider the quantity εαβγδ∂βFδγ; with Fδγ = gγαgδβFαβ.
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Fγδ =




0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


 (58)

Fγδ is obtained from Fαβ by doing the change
−→
E → −−→E . Now

consider the component ”0” of the 4-vector εαβγδ∂βFγδ:

ε0βγδ∂βFγδ = ε0123∂1F23 + ε0132∂1F32 +

ε0213∂2F13 + ε0231∂2F31 + ε0312∂3F12 + ε0321∂3F21

= ∂1F23 − ∂1F32 − ∂2F13 + ∂2F31 + ∂3F12 − ∂3F21

= ∂x(−Bx)− ∂x(Bx)− ∂y(By) + ∂y(−By) + ∂z(−Bz)− ∂z(Bz)

= −2
−→∇.
−→
B (= 0) (59)
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now let’s compute the ”1” component

ε1βγδ∂βFγδ = ε1023∂0F23 + ε1032∂0F32 + ε1302∂3F02 + ε1320∂3F20

+ε1203∂2F03 + ε1230∂2F30

= −∂0F23 + ∂0F32 − ∂3F02 + ∂3F20 + ∂2F03 − ∂2F30

= 2(D0F32 + ∂2F03 + ∂3F20)

= 2
(
1

c
∂tBx − ∂zEy + ∂yEz

)

= 2
[
(
−→∇ ×−→E )x +

1

c
∂tBx

]
(= 0) (60)

It is common to define the dual tensor of Fγδ as Fαβ ≡ 1
2εαβγδFγδ.

With such a definition the homogeneous Maxwell equations can be

casted in the expression:

∂αFαβ = 0. (61)

Note: Fαβ = Fαβ(
−→
E → −→

B,
−→
B → −−→E ).
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To include
−→
H and

−→
D , one defines the tensor Gαβ = Fαβ(

−→
E →−→

D,
−→
B → −→

H), and then Maxwell’s equations write:

∂αGαβ =
4π

c
Jβ, and ∂αFαβ = 0. (62)

Due to covariance of Fαβ, it is a tensor, the calculation of em field

from one Lorentz frame to another is made easy. Just consider:

F ′αβ =
∂x′α

∂xγ

∂x′β

∂xδ
F γδ, (63)

or in matrix notation

F ′ = Λ̃FΛ = ΛFΛ (64)
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Example: Consider a boost along the ẑ-axis, then

Λ =




γ 0 0 −βγ
0 1 0 0
0 0 1 0
−γβ 0 0 γ


 (65)

Plug the F matrix associated to F γδ in Eq. 64, the matrix multipli-
cation yields:

F ′γδ =




0 γ(Ex − βBy) γ(Ey + βBx) Ez

−γ(Ex − βBy) 0 Bz −γ(By − βEx)
−γ(Ey + βBx) −Bz 0 γ(Bx + βEy)

−Ez γ(By − βEx) −γ(Bx + βEy) 0


 (66)

by inspection we obtain the same equation as [JDJ, Eq. (11.148)].
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Fundamental Invariant of the electromagnetic field tensor: ∗
Note that the quantities

FµνFµν = 2(E2 −B2), and FµνFµν = 4
−→
E .
−→
B, (67)

are invariants. Usually one redefines these two invariants as:

I1 ≡ −1

4
FµνFµν =

1

2
(B2 − E2), and I2 ≡ −1

4
FµνFµν = −−→E .

−→
B. (68)

Note that these invariants may be rewritten as:

I1 ≡ −1

4
tr(F2) and I2 ≡ −1

4
tr(FF), (69)

where F ≡ F ν
µ = Fµαgαν and F ≡ Fν

µ = Fµαgαν.

Finally note the identities:

FF = FF = −I2I, and F2 −F2 = −2I1I (70)

∗adapted from G. Muñoz, Am. J. Phys. 65 (5), May 1997
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Eigenvalues of F (for later!):

Look for eigenvalue λ associated to eigenvector Ψ:

FΨ = λΨ ⇒ FFΨ = λFΨ ⇒ FΨ = −I2
λ

Ψ. (71)

(F2 −F2)Ψ = −2II1Ψ = [λ2 − (I2/λ)2]Ψ, (72)

So characteristic polynomial is: λ4 + 2I1λ2 − I2
2 = 0.

Solutions are:

λ± =

√√
I2
1 + I2

2 ± I1 (73)

λ1 = −λ2 = λ−, λ3 = −λ4 = iλ+.
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Equation of motion:

The equation describing the dynamics of a relativistics particle of

mass m and charge q moving under the influence of em field Fαβ is:

duα

dτ
=

q

mc
Fα

β uβ. (74)

with uα = (γc, γ−→v ). Note that this is equivalent to introducing the

”quadri-force”

fµ = Fµνuν. (75)
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