Northern Illinois University, PHY 571, Fall 2006

Part II: Special Relativity

Last updated on September 26, 2006 (report errors to piot@fnal.gov)

EM field of point charge moving at constant velocity *

Start with Maxwell's equations:

$$
\begin{array}{r}
\vec{\nabla} \cdot \vec{D}=\rho, \vec{\nabla} \cdot \vec{H}=0, \\
\vec{\nabla} \times \vec{E}+\partial_{t} \vec{B}=0, \text { and } \vec{\nabla} \times \vec{H}-\partial_{t} \vec{D}=\vec{J} .
\end{array}
$$

Write in terms of electromagnetic potentials, \vec{A} and Φ :

$$
\begin{aligned}
\qquad \vec{B}= & \vec{\nabla} \times \vec{A} \Rightarrow \vec{\nabla} \times\left(\vec{E}+\partial_{t} \vec{A}\right)=0 \Rightarrow \vec{E}=-\vec{\nabla} \Phi-\partial_{t} \vec{A} \\
\frac{1}{\mu} \vec{\nabla} \times \vec{B}-\epsilon \partial_{t} \vec{E}= & \vec{J} \Rightarrow \vec{\nabla} \times \vec{B}-\mu \epsilon \partial_{t} \vec{E}=\mu \vec{J} \\
& \Rightarrow \vec{\nabla} \times(\vec{\nabla} \times \vec{A})+\mu \epsilon\left(\vec{\nabla} \partial_{t} \Phi+\partial_{t}^{2} \vec{A}\right)=\mu \vec{J} \\
\text { Note } \vec{\nabla} \times(\vec{\nabla} \times \vec{A})= & \vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\nabla^{2} \vec{A}
\end{aligned}
$$

*for pretty movies of moving charge check Shintake-san's homepage SCSS-FEL: http://www-xfel.spring8.or.jp

$$
-\nabla^{2} \vec{A}+\vec{\nabla}\left(\vec{\nabla} \cdot \vec{A}+\mu \epsilon \partial_{t} \Phi\right)+\mu \epsilon \partial_{t}^{2} \vec{A}=\mu \vec{J}
$$

$\vec{\nabla} \cdot \vec{A}+\mu \epsilon \partial_{t} \Phi=0$ in Lorenz gauge.

$$
\begin{gather*}
\nabla^{2} \vec{A}-\mu \epsilon \partial_{t}^{2} \vec{A}=-\mu \vec{J} \quad \text { [JDJ, Eq. (6.16)] } \tag{1}\\
\vec{\nabla} \cdot \vec{D}=\rho \Rightarrow-\nabla^{2} \Phi-\partial_{t} \vec{\nabla} \cdot \vec{A}=\frac{\rho}{\epsilon} \\
\nabla^{2} \vec{\Phi}-\mu \epsilon \partial_{t}^{2} \Phi=-\frac{\rho}{\epsilon} \text { [JDJ, Eq. (6.15)] } \tag{2}
\end{gather*}
$$

For a source moving at constant velocity, $\vec{v}: \rho=\rho(\vec{x}-\vec{v} t)$ and $\vec{J}=\vec{v} \rho(\vec{x}-\vec{v} t)$. We then have to solve a set of inhomogeneous d'Alembert equations: $\square f=g(\vec{x}-\vec{v} t)$.

Consider the case $\vec{v}=v \vec{z} \Rightarrow f(\vec{x}-\vec{v} t)=(x, y, z-v t)=f(x, y, \zeta)$ with $\zeta \equiv z-v t$. Then

$$
\begin{align*}
& \partial_{z} f \rightarrow \frac{\partial \zeta}{\partial z} \partial_{\zeta} f=\partial_{\zeta} f \tag{3}\\
& \partial_{t} f \rightarrow \frac{\partial \zeta}{\partial t} \partial_{\zeta} f=-v \partial_{\zeta} f \tag{4}\\
& \Rightarrow \square f \rightarrow\left(\partial_{x}^{2}+\partial_{y}^{2}+\partial_{\zeta}^{2}-\mu \epsilon v^{2} \partial_{\zeta}^{2}\right) f=\left(\partial_{x}^{2}+\partial_{y}^{2}+\gamma^{-2} \partial_{\zeta}^{2}\right) f . \tag{5}
\end{align*}
$$

with $\gamma \equiv \frac{1}{\sqrt{1-\mu \epsilon v^{2}}}$. Let $z^{\prime}=\gamma \zeta \Rightarrow \partial_{\zeta}=\frac{\partial z^{\prime}}{\partial \zeta} \partial_{z^{\prime}}=\gamma \partial_{z^{\prime}}$:

$$
\begin{equation*}
\left(\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z^{\prime}}^{2}\right) f\left(x, y, \gamma^{-1} z^{\prime}\right)=g\left(x, y, \gamma^{-1} z^{\prime}\right) \tag{6}
\end{equation*}
$$

Point charge $\Rightarrow \rho(\vec{x}-\vec{v} t) \rightarrow \delta(x) \delta(y) \delta\left(\gamma^{-1} z^{\prime}\right)=\gamma \delta(x) \delta(y) \delta\left(z^{\prime}\right)=$ $\gamma \delta\left(\vec{x}^{\prime}\right)$.

Results:
$\vec{A} \rightarrow A \widehat{z}\left(A_{x}=A_{y}=0\right) ;$

$$
\begin{equation*}
\nabla_{x^{\prime}}^{2} A=-\gamma \mu q v \delta\left(\overrightarrow{x^{\prime}}\right), \quad \nabla_{x^{\prime}}^{2} \Phi=-\gamma \frac{q}{\epsilon} \delta\left(\overrightarrow{x^{\prime}}\right) \tag{7}
\end{equation*}
$$

Solve by inspection:

$$
\nabla_{x^{\prime}}^{2}\left(\frac{1}{\left|\overrightarrow{x^{\prime}}\right|}\right)=-4 \pi \delta\left(\overrightarrow{x^{\prime}}\right) \Rightarrow\left\{\begin{array}{l}
A=\frac{\gamma \mu}{4 \pi} \frac{q v}{R}, \tag{8}\\
\Phi=\frac{\gamma}{4 \pi \epsilon},
\end{array}\right.
$$

where $R \equiv \sqrt{x^{2}+y^{2}+\gamma^{2}(z-v t)^{2}}$.
Now we can calculate $\vec{E}=-\vec{\nabla} \Phi-\partial_{t} \vec{A}$:

$$
\begin{align*}
\vec{E} & =-\frac{\gamma q}{4 \pi \epsilon}\left(\vec{\nabla}+\mu \epsilon v \partial_{t} \hat{z}\right) \frac{1}{R} \\
& =\frac{\gamma q}{4 \pi \epsilon R^{3}}\left[x \widehat{x}+y \widehat{y}+\gamma^{2}(z-v t)\left(1-\mu \epsilon v^{2}\right) \hat{z}\right] \tag{9}
\end{align*}
$$

$$
\begin{equation*}
\vec{E}=\frac{\gamma q}{4 \pi \epsilon R^{3}}[x \widehat{x}+y \widehat{y}+(z-v t) \widehat{z}] \tag{10}
\end{equation*}
$$

Convert to spherical coordinates:
$x^{2}+y^{2}=r^{2} \sin ^{2} \theta, z-v t=r \cos \theta$.

$$
\begin{gather*}
\Rightarrow R^{2}=r^{2}\left(\sin ^{2} \theta+\gamma^{2} \cos ^{2} \theta\right) \\
=\gamma^{2} r^{2}\left(1+\frac{1-\gamma^{2}}{\gamma^{2}} \sin ^{2} \theta\right)=\gamma^{2} r^{2}\left(1-\mu \epsilon v^{2} \sin ^{2} \theta\right) \\
\Rightarrow E=\frac{\gamma q}{4 \pi \epsilon} \frac{r}{\gamma^{3} r^{3}\left(1-\mu \epsilon v^{2} \sin ^{2} \theta\right)^{3 / 2}} \\
=\frac{q}{4 \pi \epsilon r^{2}} \frac{1-\mu \epsilon v^{2}}{\left(1-\mu \epsilon v^{2} \sin ^{2} \theta\right)^{3 / 2}} \tag{11}
\end{gather*}
$$

Note: In vacuum, take $\mu \epsilon \rightarrow \mu_{0} \epsilon_{0}=c^{-2}$, and then

$$
\begin{equation*}
\vec{E}=\frac{q}{4 \pi \epsilon r^{2}} \frac{\vec{r}}{\gamma^{2}\left(1-\beta^{2} \sin ^{2} \theta\right)^{3 / 2}} . \text { [JDJ, Eq. (11.154)] } \tag{12}
\end{equation*}
$$

Note that $E(\pi / 2) / E(0)=\gamma^{3} \Rightarrow$ field lines are "squashed" orthogonal to the direction of motion.
Also we can find $\vec{B}=\vec{\nabla} \times \vec{A}$:

$$
\begin{align*}
\vec{A}=\mu \epsilon \Phi \vec{v} & \Rightarrow \vec{B}=\mu \epsilon \vec{\nabla} \times(\Phi \vec{v})=\mu \epsilon[\vec{\nabla} \Phi \times \vec{v}+\Phi \vec{\nabla} \times \vec{v}] \\
& \Rightarrow \vec{B}=\mu \epsilon \vec{\nabla} \Phi \times \vec{v} \\
\vec{v} & \times \vec{E}=-\vec{v} \times\left(\vec{\nabla} \Phi+\partial_{t} \vec{A}\right)=\vec{\nabla} \Phi \times \vec{v} \\
\vec{B} & =\mu \epsilon \vec{v} \times \vec{E}, \text { or } \vec{B}=\frac{\mu}{4 \pi} \frac{\gamma q}{R^{3}} \vec{v}(x \widehat{y}-y \widehat{x}) \tag{13}
\end{align*}
$$

Further reductions [toward JDJ Eq. (11.152)]:

$$
\begin{equation*}
\vec{E}=\frac{q}{4 \pi \epsilon_{0} r^{2}} \frac{\hat{r}}{\gamma^{2}\left(1-\beta^{2} \sin ^{2} \theta\right)^{3 / 2}} \tag{14}
\end{equation*}
$$

$\sin \theta=\frac{b}{r}=\frac{b}{\sqrt{b^{2}+v^{2} t^{2}}}$.

$$
\begin{aligned}
& 1-\beta^{2} \sin ^{2} \theta=1-\frac{\beta^{2} b^{2}}{b^{2}+(v t)^{2}}=\frac{b^{2}+v^{2} t^{2}-\beta^{2} b^{2}}{b^{2}+v^{2} t^{2}}=\frac{\left(1-\beta^{2}\right) b^{2}+v^{2} t^{2}}{b^{2}+v^{2} t^{2}} \\
& 1-\beta^{2} \sin ^{2} \theta=\frac{b^{2}+\gamma^{2} v^{2} t^{2}}{\gamma^{2} r^{2}} \Rightarrow \gamma r \sqrt{1-\beta^{2} \sin ^{2} \theta}=\sqrt{b^{2}+\gamma^{2} v^{2} t^{2}}
\end{aligned}
$$

Finally

$$
\begin{equation*}
\vec{E}=\frac{q}{4 \pi \epsilon_{0}} \frac{\gamma \vec{r}}{\left(b^{2}+\gamma^{2} v^{2} t^{2}\right)^{3 / 2}} \Rightarrow \vec{E}_{\perp}=\frac{q}{4 \pi \epsilon_{0}} \frac{\gamma b \hat{x}}{\left(b^{2}+\gamma^{2} v^{2} t^{2}\right)^{3 / 2}} \tag{15}
\end{equation*}
$$

Consider a charge q_{0} comoving with q at velocity \vec{v}. The force imparted to q_{0} by q is

$$
\begin{gather*}
F=q_{0}(\vec{E}+\vec{v} \times \vec{B}) \\
=q_{0}[\vec{E}+\mu \epsilon \vec{v} \times(\vec{v} \times \vec{E})] \\
\Rightarrow \vec{F}=q_{0}\left[\left(1-\mu \epsilon v^{2}\right) \vec{E}+\mu \epsilon v^{2} E_{z} \widehat{z}\right] \\
=q_{0}\left(\frac{1}{\gamma^{2}} \vec{E}+\frac{\gamma^{2}-1}{\gamma^{2}} E_{z} \hat{z}\right)=q_{0}\left[\frac{1}{\gamma^{2}}\left(\vec{E}-E_{z} \hat{z}\right)+E_{z} \hat{z}\right] \\
\Rightarrow \vec{F}=q_{0}\left[\frac{1}{\gamma^{2}} \vec{E}_{\perp}+\vec{E}_{\|}\right] \tag{16}
\end{gather*}
$$

The self-magnetic field of q cancels its self-electric field to within a factor $1 / \gamma^{2}$.

The squashing of the E-field of a moving charge, as it corresponds to the equation of motion, is suggestive of the Lorentz contraction, and thus indicative that electrodynamics is invariant under Lorentz transformations.

Invariance of proper time:
spherical waves propagate such that $\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}=c^{2}$. If c is the same in all inertial reference frames (postulate), then

$$
\left(\frac{d x^{\prime}}{d t^{\prime}}\right)^{2}+\left(\frac{d y^{\prime}}{d t^{\prime}}\right)^{2}+\left(\frac{d z^{\prime}}{d t^{\prime}}\right)^{2}=c^{2}
$$

So, we write:

$$
\begin{equation*}
c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}=0 \text { for photons. } \tag{17}
\end{equation*}
$$

This holds true in any inertial coordinate system. More generally we can define the proper time:

$$
\begin{equation*}
d \tau^{2} \equiv d t^{2}-\frac{1}{c^{2}}\left(d x^{2}+d y^{2}+d z^{2}\right) \tag{18}
\end{equation*}
$$

In $S R$, the proper time is an invariant - all inertial observers measure the same $d \tau$. Note that:

$$
\begin{equation*}
d \tau^{2}=d t^{2}\left(1-\beta^{2}\right)=\frac{1}{\gamma^{2}} d t^{2} \tag{19}
\end{equation*}
$$

$\vec{\beta} \equiv \frac{1}{c} \vec{v} ; \vec{v}=$ velocity measured in lab frame $(\mathcal{O}), d t=$ period between "ticks" of clock in lab frame.
When $\vec{v}=0, d \tau=d t \Rightarrow d \tau=$ period between "ticks" of clock comoving with \mathcal{O}^{\prime}. Every inertial observer measure the same value for this time interval: it is a scalar - a fixed physical quantity!

left: notation for previous slides. right: light cone, $[A B]$ is time-like $[A C]$ is space-like.

If δt represents the period between ticks of $\mathcal{O}^{\prime \prime}$ s clock, then \mathcal{O} sees it ticks with period:

$$
\begin{equation*}
d t=\gamma \delta t \tag{20}
\end{equation*}
$$

This is "time dilatation": \mathcal{O} thinks $\mathcal{O}^{\prime \prime}$ s clock runs slow. Minkowski metric and Lorentz transformations:
Let $x^{0} \equiv c t, x^{1} \equiv x, x^{2} \equiv y, x^{3} \equiv z\left[\right.$ so $\left.\vec{x}^{i} \equiv \vec{X}(\mathrm{i}=1,2,3)\right]$. Then we can write:

$$
\begin{equation*}
d s^{2}=g_{\alpha \beta} d x^{\alpha} d x^{\beta} \tag{21}
\end{equation*}
$$

with $\alpha, \beta=0,1,2,3$ and $g_{\alpha \beta}$ is the Minkowski metric:

$$
g_{\alpha \beta}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{22}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

standard convention: Use Greek indices to represent sums from 0-3 and Latin indices for sum from 1-3.

The Lorentz transformation matrix from stationary observer \mathcal{O} to moving observer \mathcal{O}^{\prime} is the "boost matrix" [JDJ, Eq.(11.98)] $\left(\wedge_{\gamma}^{\alpha} \wedge_{\delta}^{\beta} g_{\alpha \beta}=\right.$ $g_{\gamma \delta}$:

$$
\Lambda_{\mu}^{\nu}=\left(\begin{array}{cccc}
\gamma & -\gamma \beta_{x} & -\gamma \beta_{y} & -\gamma \beta_{z} \tag{,23}\\
-\gamma \beta_{x} & 1+\left(\frac{\beta_{x}}{\beta}\right)^{2}(\gamma-1) & \frac{\beta_{x} \beta_{y}}{\beta^{2}}(\gamma-1) & \frac{\beta_{x} \beta_{z}}{\beta^{2}}(\gamma-1) \\
-\gamma \beta_{y} & \frac{\beta_{x} \beta_{y}}{\beta^{2}}(\gamma-1) & 1+\left(\frac{\beta_{y}}{\beta}\right)^{2}(\gamma-1) & \frac{\beta_{y} \beta_{z}}{\beta^{2}}(\gamma-1) \\
-\gamma \beta_{z} & \frac{\beta_{x} \beta_{z}}{\beta^{2}}(\gamma-1) & \frac{\beta_{y} \beta_{z}}{\beta^{2}}(\gamma-1) & 1+\left(\frac{\beta_{z}}{\beta}\right)^{2}(\gamma-1)
\end{array}\right)
$$

provided the coordinates of \mathcal{O} and \mathcal{O}^{\prime} are aligned. The the Lorentz transformation from \mathcal{O} and \mathcal{O}^{\prime} is:

$$
\begin{equation*}
x^{\prime \alpha}=\wedge_{\beta}^{\alpha} x^{\beta} \tag{24}
\end{equation*}
$$

Note $\wedge_{\beta}^{\alpha}=\frac{\partial x^{\prime \alpha}}{\partial x^{\beta}}$. If the coordinate axes are not aligned then the transformation is the product of Λ_{β}^{α} and a rotation matrix.

The principle of $S R$ is : All laws of physics must be invariant under Lorentz transformations. "Invariant" \leftrightarrow Laws retain the same mathematical form and numerical constant (scalar) retain the same value.
Particle dynamics in SR
Define the "4-velocity": $u^{\alpha} \equiv \frac{d x^{\alpha}}{d \tau}=c \frac{d x^{\alpha}}{d s}$:

$$
\begin{equation*}
u^{0}=c \frac{d t}{d \tau}=\gamma c \quad \text { and } u^{i}=\frac{1}{c} \frac{d x^{i}}{d \tau}=c \frac{d t}{d \tau} \frac{d x^{i}}{d t}=c \gamma \beta^{i} \tag{25}
\end{equation*}
$$

Then

$$
\begin{equation*}
u_{\alpha} u^{\alpha}=g_{\alpha \beta} u^{\beta} u^{\alpha}=\gamma^{2}-\gamma^{2} \beta^{2}=c^{2} \tag{26}
\end{equation*}
$$

is an invariant.

Moreover since $d \tau$ is an invariant and x^{α} conforms to Lorentz transformation, then

$$
\begin{equation*}
u^{\prime \alpha}=\wedge_{\beta}^{\alpha} u^{\beta} \tag{27}
\end{equation*}
$$

$\Rightarrow u^{\alpha}$ satisfies the Principle of SR.
Define the 4-momentum of a particle:

$$
\begin{equation*}
P_{\alpha} \equiv m u^{\alpha} \tag{28}
\end{equation*}
$$

$\Rightarrow P^{0}=\gamma m c=E / c, P^{i}=p^{i} ; E=$ total energy, $p^{i}=$ ordinary 3-momentum, $m=$ particle's rest mass. Then

$$
\begin{equation*}
P_{\alpha} P^{\alpha}=m^{2} u_{\alpha} u^{\alpha}=m^{2} c^{2}=E / c^{2} \tag{29}
\end{equation*}
$$

is an invariant. The fundamental dynamical law for particle interactions in SR is that 4-momentum is conserved in any Lorentz frame.

Note that

$$
\begin{equation*}
P^{\prime \alpha}=\Lambda_{\beta}^{\alpha} P^{\beta} \tag{30}
\end{equation*}
$$

also one has:

$$
\begin{align*}
P_{\alpha} P^{\alpha}= & g_{\alpha \beta} P^{\beta} P^{\alpha}=E^{2} / c^{2}-p^{2} \tag{31}\\
& E^{2} / c^{2}-p^{2}=(m c)^{2} \tag{32}\\
\Rightarrow & E=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}
\end{align*}
$$

The kinetic energy of a particle is $T=E-m c^{2}$:

$$
\begin{equation*}
T=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}-m c^{2} \tag{33}
\end{equation*}
$$

Example: Consider the reaction (one neutron at rest)

$$
n+n \rightarrow n+n+n+\bar{n}
$$

What is the minimum required energy for the incoming n that will enable the reaction to proceed?
At threshold the four neutron are at rest in the lab frame, so that the 4-momentum conservation requires:

$$
\begin{gather*}
P_{1}^{\alpha}+P_{2}^{\alpha}=P_{f}^{\alpha} \tag{34}\\
\Rightarrow\left(P_{1}^{\alpha}+P_{2}^{\alpha}\right)\left(P_{1 \alpha}+P_{2 \alpha}\right)=P_{f}^{\alpha} P_{f \alpha}=16\left(m_{n} c\right)^{2} \\
P_{1}^{\alpha} P_{1 \alpha}+2 P_{1}^{\alpha} P_{2 \alpha}+P_{2}^{\alpha} P_{2 \alpha}=2\left(m_{n} c\right)^{2}+2 P_{1}^{\alpha} P_{2 \alpha} \\
\Rightarrow P_{1}^{\alpha} P_{2 \alpha}=7\left(m_{n} c\right)^{2} . \tag{35}\\
P_{1}^{\alpha} P_{2 \alpha}=g_{\alpha \beta} P_{1}^{\alpha} P_{2}^{\beta}=g_{00} P_{1}^{0} P_{2}^{0}=m_{n} c \frac{E}{c} \\
E=7 m_{n} c^{2} . \tag{36}
\end{gather*}
$$

Photon emission and absorption:

Let $u_{e, a}^{\alpha}=4$-velocity of emitter, absorber, respectively. $E_{e, a}=$ photon energy measured by emitter, absorber, respectively. $P^{\alpha}=4$-momentum of photon.

Then look at

$$
\begin{aligned}
P_{\alpha} u^{\alpha} & =g_{\alpha \beta} P^{\beta} u^{\alpha} \\
& =P^{0} u^{0}-P^{i} u^{i}=c P^{0}=E
\end{aligned}
$$

1st term $u^{0}=c$, 2nd term $u^{i}=0$ in either emitter's or absorber's frame.

So $E=p_{\alpha} u^{\alpha}$ is the photon energy measured by an observer with 4 -velocity u^{α}. The expression is the same in any frame, including accelerating frame! So:

$$
E_{e}=P_{\alpha} u_{e}^{\alpha} \quad \text { and }, E_{a}=P_{\alpha} u_{a}^{\alpha}
$$

Example: "Absorber" is rotating with angular velocity Ω on a circle of radius R_{A}. Emitter is stationary - Let's find E_{a} / E_{e}
In emitter's frame: $c^{2} d \tau=g_{\alpha \beta} d x^{\alpha} d x^{\beta}$, the emitter is stationary so $u_{e}^{\alpha}=(c, 0,0,0)$.
In absorber frame:

$$
\begin{align*}
c^{2}(d \tau)^{2} & =g_{\alpha \beta} d x^{\alpha} d x^{\beta} \\
& =c^{2} d t^{2}-v^{2} d t^{2}=c^{2} d t^{2}-R_{A}^{2} d \phi^{2} \\
d \tau^{2} & =d t^{2}-\frac{R_{A}^{2}}{c^{2}} d \phi^{2} \tag{37}
\end{align*}
$$

From previous slide (two slides ago) we have:

$$
\begin{align*}
\frac{E_{a}}{E_{e}} & =\frac{P_{\alpha} u_{a}^{\alpha}}{P_{\alpha} u_{e}^{\alpha}}=\frac{P_{0} u_{a}^{0}-\vec{p} \overrightarrow{u_{a}^{i}}}{P_{0} c} \\
& =\frac{P_{0} u_{\alpha}^{0}-|\vec{p}|\left|\overrightarrow{u_{a}^{i}}\right| \cos \theta}{P_{0} c} \tag{38}
\end{align*}
$$

But $\cos \theta=\sin \phi$, and for photons $P_{\alpha} P^{\alpha}=\left(P^{0}\right)^{2}-|\vec{P}|^{2}=0 \Rightarrow$ $|\vec{P}|=P^{0}$. Thus

$$
\begin{equation*}
\frac{E_{a}}{E_{e}}=\frac{u_{a}^{0}-\left|\vec{u}_{a}\right| \sin \phi}{c} \tag{39}
\end{equation*}
$$

But,

$$
\begin{equation*}
\left|\vec{u}_{a}\right|=R_{A} \frac{d \phi}{d \tau}=\frac{R_{A} \Omega}{\sqrt{1-\left(R_{A} \Omega / c\right)^{2}}} ; u_{a}^{0}=\frac{c}{\sqrt{1-\left(R_{A} \Omega / c\right)^{2}}} \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
\frac{E_{a}}{E_{e}}=\frac{\lambda_{e}}{\lambda_{a}} \Rightarrow \frac{\lambda_{e}}{\lambda_{a}}=\frac{1-\left(R_{A} \Omega / c\right) \sin \phi}{\sqrt{1-\left(R_{A} \Omega / c\right)^{2}}} \tag{41}
\end{equation*}
$$

Doppler shift $\left(\phi=90^{\circ}\right)$:

$$
\begin{equation*}
\frac{\lambda_{e}}{\lambda_{a}}=\frac{1-\left(R_{A} \Omega / c\right)}{\sqrt{1-\left(R_{A} \Omega / c\right)^{2}}}=\sqrt{\frac{1-\left(R_{A} \Omega / c\right)}{1+\left(R_{A} \Omega / c\right)}} \tag{42}
\end{equation*}
$$

Covariance of Electrodynamics
We wish to proceed in keeping with Jackson's notation, which involves switching from SI units to Gaussian units.

$$
S I
$$

$$
\begin{array}{cc}
\vec{\nabla} \cdot \vec{D}=\rho & \vec{\nabla} \cdot \vec{D}=4 \pi \rho \\
\vec{\nabla} \times \vec{H}-\partial_{t} \vec{D}=\vec{J} & \vec{\nabla} \times \vec{H}-\frac{1}{c} \partial_{t} \vec{D}=\frac{4 \pi}{c} \vec{J} \tag{43}\\
\vec{\nabla} \times \vec{E}+\partial_{t} \vec{B}=0 & \vec{\nabla} \times \vec{E}+\frac{1}{c} \partial_{t} \vec{B}=0 \\
\vec{\nabla} \vec{B}=0 & \vec{\nabla} \vec{B}=0 \\
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})=0 & \vec{F}=q\left(\vec{E}+\frac{\vec{v}}{c} \times \vec{B}\right)
\end{array}
$$

Conversions:
$\frac{\vec{E}^{G}}{\sqrt{4 \pi \epsilon_{0}}}=\vec{E}^{S I} ; \sqrt{\frac{\epsilon_{0}}{4 \pi}} \vec{D}^{G}=\vec{D}^{S I} ; \sqrt{4 \pi \epsilon_{0}} \rho^{G}\left(\vec{J}^{G}, q^{G}\right)=\rho^{S I}\left(\vec{J}^{S I}, q^{S I}\right) ;$
$\sqrt{\frac{\mu_{0}}{4 \pi}} \vec{B}^{G}=\vec{B}^{S I} ; \quad \frac{\vec{H}^{G}}{\sqrt{4 \pi \mu_{0}}}=\vec{H}^{S I} ; \quad \epsilon_{0} \epsilon^{G}=\epsilon^{S I} ; \mu_{0} \mu^{G}=\mu^{S I} ; c=$ $\left(\mu_{0} \epsilon_{0}\right)^{-1 / 2}$.

As one check, look at the Lorentz force:

$$
\begin{aligned}
\vec{F}^{G} & =q^{G}\left(\vec{E}^{G}+\frac{1}{c} \vec{v} \times \vec{B}^{G}\right) \\
\Rightarrow \vec{F}^{S I} & =\frac{q^{S I}}{\sqrt{4 \pi \epsilon_{0}}}\left[\sqrt{4 \pi \epsilon_{0}} \vec{E}^{S I}+\sqrt{\mu_{0} \epsilon_{0}} \vec{v} \times \sqrt{\frac{4 \pi}{\mu_{0}}} \vec{B}^{S I}\right] \\
& =q^{S I}\left(\overrightarrow{E^{S I}}+\vec{v} \times \vec{B}^{S I}\right) .
\end{aligned}
$$

The conversion from "Maxwell G" to "Maxwell SI" works the same way. So we do have a prescription to go from Gaussian results to SI results and vice versa.

Current density as a 4-vector:
Consider a system of particles with positions $\vec{x}_{n}(t)$ and charges q_{n}. The current and charge densities are:

$$
\begin{aligned}
\vec{J}(\vec{x}, t) & =\sum_{n} q_{n} \delta^{3}\left(\vec{x}-\vec{x}_{n}(t)\right) \overrightarrow{x_{n}}(t) \\
\rho(\vec{x}, t) & =\sum_{n} q_{n} \delta^{3}\left(\vec{x}-\vec{x}_{n}(t)\right)
\end{aligned}
$$

Note that for any smooth function $f(\vec{x}), \delta^{3}$ acts as:

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(\vec{x}) \delta^{3}(\vec{x}-\vec{y})=f(\vec{y}) \tag{44}
\end{equation*}
$$

if we define $J^{0} \equiv c \rho$ and $J^{i}(\vec{x})=\sum_{n} q_{n} \delta^{3}\left(x^{i}-x_{n}^{i}(t)\right) d_{t} x_{n}^{i}(t)$, then using δ^{4} function we can write:

$$
\begin{equation*}
J^{\alpha}(x)=\int \sum_{n} q_{n} \delta^{4}\left(x^{\alpha}-x_{n}^{\alpha}(t)\right) d x^{0} \frac{d x_{n}^{\alpha}(t)}{d t} \tag{45}
\end{equation*}
$$

J^{α} is a function of $x^{\alpha} \rightarrow$ it is a Lorentz invariant; J^{α} is a 4-vector. $J^{\alpha} \equiv(c \rho, \vec{J})$. Also note $J^{\alpha} \equiv \rho u^{\alpha}$

Equation of charge continuity:

$$
\begin{align*}
\vec{\nabla} \cdot \vec{J}(\vec{x}, t) & =\sum_{n} q_{n} \frac{\partial}{\partial x^{i}} \delta^{3}\left(\vec{x}-\vec{x}_{n}(t)\right) \frac{d x_{n}^{i}(t)}{d t} \\
& =-\sum_{n} q_{n} \frac{\partial}{\partial x_{n}^{i}} \delta^{3}\left(\vec{x}-\vec{x}_{n}(t)\right) \frac{d x_{n}^{i}(t)}{d t} \\
& =-\sum_{n} q_{n} \partial_{t} \delta^{3}\left(\vec{x}-\vec{x}_{n}(t)\right) \\
& =-\partial_{t} \rho(\vec{x}, t)=-\partial_{0}[c \rho(\vec{x}, t)] . \tag{46}
\end{align*}
$$

So the equation of charge continuity writes as $\partial^{\alpha} J_{\alpha}=0$

4-gradient

In the previous slide we use the operator ∂_{α}. It is defined as

$$
\begin{equation*}
\partial_{\alpha} \equiv \frac{\partial}{\partial x^{\alpha}} \tag{47}
\end{equation*}
$$

This operator transforms as:

$$
\begin{equation*}
\partial_{\mu}^{\prime}=\frac{\partial}{\partial x^{\mu}}=\frac{\partial}{\partial x^{\nu}} \frac{\partial x^{\nu}}{\partial x^{\prime \mu}}=\left(\wedge^{-1}\right)_{\mu}^{\nu} \frac{\partial}{\partial x^{\nu}}=\left(\wedge^{-1}\right)_{\mu}^{\nu} \frac{\partial_{\nu}}{.} \tag{48}
\end{equation*}
$$

Note that $\partial_{\mu}=\left(\partial_{0}, \vec{\nabla}\right)$.
We can "upper" the indice and define

$$
\begin{equation*}
\partial^{\mu}=g^{\mu \nu} \partial_{\nu}=\left(\partial_{0},-\vec{\nabla}\right) \tag{49}
\end{equation*}
$$

Finally we can define the d'Alembertian: $\square \equiv \partial^{\alpha} \partial_{\alpha}$.

Potential as a 4-vector:

$$
\begin{equation*}
A^{\alpha} \equiv(\phi, \vec{A}) \tag{50}
\end{equation*}
$$

Lorentz Gauge then write $\partial_{\alpha} A^{\alpha}=0$. We also have

$$
\begin{equation*}
\square A^{\alpha}=\frac{4 \pi}{c} J^{\alpha} \tag{51}
\end{equation*}
$$

or in SI units

$$
\begin{equation*}
\square A^{\alpha}=\mu_{0} J^{\alpha}, \quad[\mathrm{SI}] \tag{52}
\end{equation*}
$$

this is the equation we wrote when deriving the field induced by a charge moving at constant velocity.

Returning to Maxwell Equation
Define the matrix $F^{\alpha \beta} \equiv \partial^{\alpha} A^{\beta}-\partial^{\beta} A^{\alpha}=g^{\alpha \delta} \partial_{\delta} A^{\beta}-g^{\beta \delta} \partial_{\delta} A^{\alpha}$:

$$
F^{\alpha \beta}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \tag{53}\\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

Look at:

$$
\partial_{\alpha} F^{\alpha \beta}=\partial_{0} F^{0 \beta}+\partial_{1} F^{1 \beta}+\partial_{2} F^{2 \beta}+\partial_{3} F^{3 \beta}
$$

$$
\begin{align*}
\partial_{\alpha} F^{\alpha 0} & =\partial_{0} F^{00}+\partial_{1} F^{10}+\partial_{2} F^{20}+\partial_{3} F^{30} \\
& =\partial_{i} E^{i}=\vec{\nabla} \cdot \vec{E}=4 \pi \rho=\frac{4 \pi}{c} J^{0} \tag{54}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\partial_{\alpha} F^{\alpha 1} & =\partial_{0} F^{01}+\partial_{1} F^{11}+\partial_{2} F^{21}+\partial_{3} F^{31} \\
& =\frac{1}{c} \partial_{t}\left(-E_{x}\right)+\partial_{x}(0)+\partial_{y}\left(-B_{z}\right)-\partial_{z}\left(B_{y}\right)=-\frac{1}{c} \partial_{t}\left(E_{x}\right)+[\vec{\nabla} \times \vec{B}]_{x} \\
& =[\vec{\nabla} \times \vec{B}]_{x}-\frac{1}{c} \partial_{t} E_{x}=\frac{4 \pi}{c} J^{1} \tag{55}
\end{align*}
$$

...The same for component 2, and 3. So we cast these equations under:

$$
\begin{equation*}
\partial_{\alpha} F^{\alpha \beta}=\frac{4 \pi}{c} J^{\beta}, \tag{56}
\end{equation*}
$$

This corresponds to the inhomogeneous Maxwell's equations. In SI units $F^{\alpha \beta}$ is obtained by replacing \vec{E} by \vec{E} / c.

How do we get the homogenous Maxwell's equations?
Let's introduce the Levi-Civita (rank 4) tensor as:

$$
\epsilon^{\alpha \beta \gamma \delta}=\left\{\begin{array}{cc}
+1 & \text { if } \alpha, \beta, \gamma, \delta \tag{57}\\
-1 & \text { are even permutation of } 0,1,2,3 \\
0 & \text { if } \alpha, \beta, \gamma, \delta \\
\text { are odd permutation of } 0,1,2,3
\end{array}\right.
$$

and consider the quantity $\epsilon^{\alpha \beta \gamma \delta} \partial_{\beta} F_{\delta \gamma}$; with $F_{\delta \gamma}=g_{\gamma \alpha} g_{\delta \beta} F^{\alpha \beta}$.

$$
F_{\gamma \delta}=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \tag{58}\\
-E_{x} & 0 & -B_{z} & B_{y} \\
-E_{y} & B_{z} & 0 & -B_{x} \\
-E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

$F_{\gamma \delta}$ is obtained from $F^{\alpha \beta}$ by doing the change $\vec{E} \rightarrow-\vec{E}$. Now consider the component " 0 " of the 4 -vector $\epsilon^{\alpha \beta \gamma \delta} \partial_{\beta} F_{\gamma \delta}$:

$$
\begin{align*}
\epsilon^{0 \beta \gamma \delta} \partial_{\beta} F_{\gamma \delta}= & \epsilon^{0123} \partial_{1} F_{23}+\epsilon^{0132} \partial_{1} F_{32}+ \\
& \epsilon^{0213} \partial_{2} F_{13}+\epsilon^{0231} \partial_{2} F_{31}+\epsilon^{0312} \partial_{3} F_{12}+\epsilon^{0321} \partial_{3} F_{21} \\
= & \partial_{1} F_{23}-\partial_{1} F_{32}-\partial_{2} F_{13}+\partial_{2} F_{31}+\partial_{3} F_{12}-\partial_{3} F_{21} \\
= & \partial_{x}\left(-B_{x}\right)-\partial_{x}\left(B_{x}\right)-\partial_{y}\left(B_{y}\right)+\partial_{y}\left(-B_{y}\right)+\partial_{z}\left(-B_{z}\right)-\partial_{z}\left(B_{z}\right) \\
= & -2 \vec{\nabla} \cdot \vec{B}(=0) \tag{59}
\end{align*}
$$

now let's compute the "1" component

$$
\begin{align*}
\epsilon^{1 \beta \gamma \delta} \partial_{\beta} F_{\gamma \delta}= & \epsilon^{1023} \partial_{0} F_{23}+\epsilon^{1032} \partial_{0} F_{32}+\epsilon^{1302} \partial_{3} F_{02}+\epsilon^{1320} \partial_{3} F_{20} \\
& +\epsilon^{1203} \partial_{2} F_{03}+\epsilon^{1230} \partial_{2} F_{30} \\
= & -\partial_{0} F_{23}+\partial_{0} F_{32}-\partial_{3} F_{02}+\partial_{3} F_{20}+\partial_{2} F_{03}-\partial_{2} F_{30} \\
= & 2\left(D_{0} F_{32}+\partial_{2} F_{03}+\partial_{3} F_{20}\right) \\
= & 2\left(\frac{1}{c} \partial_{t} B_{x}-\partial_{z} E_{y}+\partial_{y} E_{z}\right) \\
= & 2\left[(\vec{\nabla} \times \vec{E})_{x}+\frac{1}{c} \partial_{t} B_{x}\right](=0) \tag{60}
\end{align*}
$$

It is common to define the dual tensor of $F_{\gamma \delta}$ as $\mathcal{F}^{\alpha \beta} \equiv \frac{1}{2} \epsilon^{\alpha \beta \gamma \delta} F_{\gamma \delta}$. With such a definition the homogeneous Maxwell equations can be casted in the expression:

$$
\begin{equation*}
\partial_{\alpha} \mathcal{F}^{\alpha \beta}=0 \tag{61}
\end{equation*}
$$

Note: $\mathcal{F}_{\alpha \beta}=F_{\alpha \beta}(\vec{E} \rightarrow \vec{B}, \vec{B} \rightarrow-\vec{E})$.

To include \vec{H} and \vec{D}, one defines the tensor $G^{\alpha \beta}=F^{\alpha \beta}(\vec{E} \rightarrow$ $\vec{D}, \vec{B} \rightarrow \vec{H}$), and then Maxwell's equations write:

$$
\begin{equation*}
\partial_{\alpha} G^{\alpha \beta}=\frac{4 \pi}{c} J^{\beta}, \text { and } \partial_{\alpha} \mathcal{F}^{\alpha \beta}=0 \tag{62}
\end{equation*}
$$

Due to covariance of $F^{\alpha \beta}$, it is a tensor, the calculation of em field from one Lorentz frame to another is made easy. Just consider:

$$
\begin{equation*}
F^{\prime \alpha \beta}=\frac{\partial x^{\prime \alpha}}{\partial x^{\gamma}} \frac{\partial x^{\prime \beta}}{\partial x^{\delta}} F^{\gamma \delta}, \tag{63}
\end{equation*}
$$

or in matrix notation

$$
\begin{equation*}
F^{\prime}=\tilde{\wedge} F \wedge=\wedge F \wedge \tag{64}
\end{equation*}
$$

Example: Consider a boost along the \bar{z}-axis, then

$$
\Lambda=\left(\begin{array}{cccc}
\gamma & 0 & 0 & -\beta \gamma \tag{65}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right)
$$

Plug the F matrix associated to $F^{\gamma \delta}$ in Eq. 64, the matrix multiplication yields:

$$
F^{\prime \gamma \delta}=\left(\begin{array}{cccc}
0 & \gamma\left(E_{x}-\beta B_{y}\right) & \gamma\left(E_{y}+\beta B_{x}\right) & E_{z} \tag{66}\\
-\gamma\left(E_{x}-\beta B_{y}\right) & 0 & B_{z} & -\gamma\left(B_{y}-\beta E_{x}\right) \\
-\gamma\left(E_{y}+\beta B_{x}\right) & -B_{z} & 0 & \gamma\left(B_{x}+\beta E_{y}\right) \\
-E_{z} & \gamma\left(B_{y}-\beta E_{x}\right) & -\gamma\left(B_{x}+\beta E_{y}\right) & 0
\end{array}\right)
$$

by inspection we obtain the same equation as [JDJ, Eq. (11.148)].

Fundamental Invariant of the electromagnetic field tensor: * Note that the quantities

$$
\begin{equation*}
F^{\mu \nu} F_{\mu \nu}=2\left(E^{2}-B^{2}\right), \text { and } F^{\mu \nu} \mathcal{F}_{\mu \nu}=4 \vec{E} \cdot \vec{B} \tag{67}
\end{equation*}
$$

are invariants. Usually one redefines these two invariants as:

$$
\begin{equation*}
\mathcal{I}_{1} \equiv-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}=\frac{1}{2}\left(B^{2}-E^{2}\right), \text { and } \mathcal{I}_{2} \equiv-\frac{1}{4} F^{\mu \nu} \mathcal{F}_{\mu \nu}=-\vec{E} \cdot \vec{B} \tag{68}
\end{equation*}
$$

Note that these invariants may be rewritten as:

$$
\begin{equation*}
\mathcal{I}_{1} \equiv-\frac{1}{4} \operatorname{tr}\left(F^{2}\right) \text { and } \mathcal{I}_{2} \equiv-\frac{1}{4} \operatorname{tr}(F \mathcal{F}) \tag{69}
\end{equation*}
$$

where $F \equiv F_{\mu}^{\nu}=F^{\mu \alpha} g_{\alpha \nu}$ and $\mathcal{F} \equiv \mathcal{F}_{\mu}^{\nu}=\mathcal{F}^{\mu \alpha} g_{\alpha \nu}$.
Finally note the identities:

$$
\begin{equation*}
F \mathcal{F}=\mathcal{F} F=-\mathcal{I}_{2} I, \text { and } F^{2}-\mathcal{F}^{2}=-2 \mathcal{I}_{1} I \tag{70}
\end{equation*}
$$

*adapted from G. Muñoz, Am. J. Phys. 65 (5), May 1997

Eigenvalues of F (for later!):
Look for eigenvalue λ associated to eigenvector Ψ :

$$
\begin{align*}
& F \Psi=\lambda \Psi \Rightarrow \mathcal{F} F \Psi=\lambda \mathcal{F} \Psi \Rightarrow \mathcal{F} \Psi=-\frac{\mathcal{I}_{2}}{\lambda} \Psi \tag{71}\\
& \left(F^{2}-\mathcal{F}^{2}\right) \Psi=-2 I \mathcal{I}_{1} \Psi=\left[\lambda^{2}-\left(\mathcal{I}_{2} / \lambda\right)^{2}\right] \Psi \tag{72}
\end{align*}
$$

So characteristic polynomial is: $\lambda^{4}+2 \mathcal{I}_{1} \lambda^{2}-\mathcal{I}_{2}^{2}=0$. Solutions are:

$$
\begin{gather*}
\lambda_{ \pm}=\sqrt{\sqrt{\mathcal{I}_{1}^{2}+\mathcal{I}_{2}^{2}} \pm \mathcal{I}_{1}} \tag{73}\\
\lambda_{1}=-\lambda_{2}=\lambda_{-}, \lambda_{3}=-\lambda_{4}=i \lambda_{+}
\end{gather*}
$$

Equation of motion:
The equation describing the dynamics of a relativistics particle of mass m and charge q moving under the influence of em field $F_{\alpha \beta}$ is:

$$
\begin{equation*}
\frac{d u^{\alpha}}{d \tau}=\frac{q}{m c} F_{\beta}^{\alpha} u^{\beta} . \tag{74}
\end{equation*}
$$

with $u^{\alpha}=(\gamma c, \gamma \vec{v})$. Note that this is equivalent to introducing the " quadri-force"

$$
\begin{equation*}
f^{\mu}=F^{\mu \nu} u_{\nu} \tag{75}
\end{equation*}
$$

