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Radiation from accelerating charges

Radiation emitted at time t’ reaches the observer (P) at time ¢t > ¢'.
It is retarded due to the finite speed of light. Let’'s first derive the
4-potential due to the moving charge.



Four-potential produced by a moving charge

Start with the inhomogenous Maxwell’'s equation:

4
0o = FP =746 (1)

C
B is the 4-current j8 = (¢p, 7). Use the definition of F8 = g2 A8 _
9P A% and impose the Lorenz Gauge condition 0,A% = 0 we have:
4P

C

a0 AP — 5,08 AY = §,0%AP = (2)

which can be re-written:
4
AP = 73%) (3)

Solution of the latter equation — find Green's function D(x,z’) for
the equation

(oD (z,2") = 6 (z — o) (4)



_,
where §(4) (z—2') = (S(mo—x’o)d@)(?—az’). If free-space (no boundary
condition) then D(z,2') = D(x —2'). Let 2% =z% — 2% D(xz—2') —
D(z) and the d’'Alembert equation rewrites:

[1.D(z) = 6 (2).

Which can be solved using the Fourier transform method: write

1 _ )
D(z) = /d4kD k)e~ ™. and,
1 .
54 — /d4k —zkz 5
Expliciting in the wave equation on finds:
- 1
D(k) = —
k)=~

where k? = (ko, ®) is the four-wavevector, and let z = (zo,ﬁ).
kgkP = k3 — k2.



so the Green function is given by:

B 1 4 e tkz
b(z) = (277)4/ k(= ) — K2
tkozo
- (27T)4/d3/<,e7’“ R /dkol€2 > (6)

Consider the integral over kg. It can be replaced by an integral
over a closed contour in the complex space associated to kg. The
integrand has two poles at kg £ k on the real axis. If we consider

zp > 0 the contour need to be closed toward Zm(kg) = —oo and the
integral is:
o0 —ZkoZo —’LkoZo e—ikoZO
dhosr— = ]{ dk — 2irY Res S ——
/oo Ok'o—KJQ O]{JQ—K WZ (kg—/#)

- —?sm(kzo) (7)



So D, the retarded Green function, becomes:
1 Sin —
D(2) /d3k (v20) 7. R (29 > 0) (8)
(27)3 K
_ @(ZO) /d3k5in(ﬁz())ei?'ﬁ
(2m)3 K
where ©(z) is the Heaviside function. Introducing d3x = k2dk sin(0)d0d¢
then we can work out the integral over angle:

= o - . ikz COS O™
/ sin dfdgpe’ T = /O dob /O sin 0dfei =050 — o [6 | ]
—IRKZ
0
_ 47TS|n(/£R). (9)

kR



So,

D(z) = 2(Z;)3)/dm%sin(m}2) sin(kzp)
7T

© 00 . .
= 275;3{)/0 drk sin(kR) sin(kzg)
_ 1 1 0 ik(B4zg) | ik(R—2)  .—ik(R—z20) 4 .ik(R4+z0)
o 47TR27T/O [e c c Te }
_ ©(20) 1 /+°O [_eikz(R—I—zo) 3 6ik(R—zo)}

AtrR 27 J—oc0
_ ©(#0) B _ ©(20) B
= g 0G0 —R)+ (0 + B)] = —>—="6(20 — R)

since the condition zg > 0 implies §(zg + R) = 0.



D(x—2a') = i;zjg)ﬂx 4 —R) (13)

Now use the identity
S[(x — 2')?] S[(x — 20)? — |z — 2|7

6[(zo — zg — R)(zo — zg + R)]

1
= = |0(xo — 26— B) + 6(z0 —ap + R)|  (14)
where we make the use of §[(z —z1)(z—x5)] = 5("’_57;;&22?_:”2). The
function D becomes:
1
D(z — 1) = 2—@(:170 — zp)8[(x — 2')?]. (15)
T

Then the retarded 4-potential is given by the convolution integral:

A%z) = const. + 47” [ d*a' D — a1 (a") (16)



Liénard-Wiechert Potentials

The 4-potential caused by a charge in motion is:

AY(z) = 47” 442/ D(x — 2)%(2)), (17)

The 4-current is (see Part II)
(2 = ec / drv®(r)s Pz — r(7)] (18)

7 is the charge’s proper time. So expliciting D and 5% the 4-potential
takes the form

A%(z) = 2e / drd*a'© (zg — 2h)d[(z — &) 2o (1) 6P [z — r(1)]

— Qe/dT@(azo — ) (P)o[(x — r(1))?] (19)



~1
|

A%(@) = 2 [ drd(r - 1)z~ 2)v" (|5 3

using the relation

S (@)) = 3 28 =)

v oz ‘xzxz

The four-vector potential finally writes:
ev®(7)
vO[x — r(7)]3
which can be written in the more familiar form:

A%(x) =

T=T0

ﬁ
—— ] . and, A(7,1) = { 0
(1 — B.n)RI, (1- 8.n)R
where ret means the quantity in bracket have to be evaluated at the

retarded time ¢/ that satisfies the causality condition.

d(x,t) = [ (20)

ret
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Field associated to a moving charge

P(x.t)

4 —
gl X
R: \

- 0

Causality imposes:
c(t-t')=|R]

r(t) particle trajectory
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Field associated to a moving charge

Consider a charge g in motion the Lienard-Witchert potential are

given by:
d(T,t 1
(Jiﬁ):[ 4 <ﬁ>] | (21)
A(Qﬁ,t) (1— Bn)R 6 ret
The fields are given by ﬁ — —?CD — %%, but, we need to evaluate

the quantities at the retarded time t’. First let's express the ? and
0/0t operators in term of retarded quantities.

OR ot’
R(t) = c(t — ¢ ——=cll1l-=-=]. 22
() =ct—1) =7 ( &:) (22)
On another hand:
8R_8R8t’

(23)

ot Ot ot

12



180R2 8 OR AR
- —R_=R-"  so R—=_-7.R
2 ot ot/ t/ ot/
Thus
OR — ot
— = —cf.n—
ot ot
From equation 22 and 25 one gets
ot 1 1 0 190

ot 1-Fa kK ot rot
For the operator ? take:
VR=V[c(t—t)] = -V
it ?t/ is the gradient operator evaluated at constant ¢ then

OR—
VR = V, R+ SVt

= fﬁ,—cﬁ.th

(24)

(25)

(26)

(27)

(28)
13



From equation 27 and 28 one gets:

-~

= —
Vit = —
c(l— B.n)
So we finally get:
? _—_ —>t/ - ﬁi
ck Ot/
So the electric field is :
10A n 0P 10A
E=-Vo--""=_V,o4 27
C ck Ot' ke Ot/
with & = &.
YV, b =—<_[RV k+ KV ,R]
pt K K
t/ (HJR)Q t! t/
VR =mn, and
—

(29)

(30)

(31)

(32)

(33)
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—
R
— ?t//ﬁl — (? ?t/)ﬁ
— _R2
—> I d
R D
R :
So we finally get:
—
Vod = sl 8 + a8 + - 5.l
e N —>
where we have used v =1 — B .n. Now let’s calculate the
n
9 -
ck Ot

od o /1
ot ‘ot (RR) (/ﬁ:R)Q[RR + RAl

(34)

(35)

quantity

(36)
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A 8 R RR—RR
n = —— =
ot' R R? .
_ —v 4+ (V.n)n _ 6 —(p.n)n
R R
Then
kR4 &R = —cfB.ik+ R{—gﬁ Yl i (Rﬁ 'ﬁ)ﬁ]}
—= —E}_i —|— Cﬁz — Cﬁ’ﬁ
So
b = € [—;ﬁ + 8% — cﬁﬁ]

 (kR)?
So from Equations 35 and 39 we have

e e

Vo = —
v (kR)2

(- G+ £[+§.ﬁ B2+ cB.A])

(37)

(38)

(39)

(40)
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Now we need to compute %’?

OA —of 1—

o e TR 40

So

— — — . e—> eﬁ ——

A=po+Bod=Tdpbp )2[5R+cﬁn—626] (42)
Finally the E-field is:

2 — Sy 194

E(t) = Vo) -7

n, 7 — —
= (HR)Q (A= B)rs+—(B.R+ch.n—cs)

8 (43)

—?(B.ﬁ—l—cﬁ.ﬁ—cﬁ% —

CRK,Q
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After simplification (and using ﬁﬁ = 1— k) we end-up with:

E) =

= 55 |1-80- )]+

— —
So finally the E and B fields are given by:

€

E(t) = L%%Qm_ﬁ)]
B(t) = [nx Ele

where the identity 7 x [(7— B) x 8] = B.a(h— B) — (1 — B.7)
was used.

o+ X1 -F) x 81



field of a charge moving at constant velocity

R — [ R — — ]
’ v2Kk3R? c k3R
ret i |
B(T,t) = [Ax Elret

if 3 =0, constant velocity then:

A
— n —
E(Z,t) = ¢
72’{3R2 ret
from part II, we know that:
Yqb

E (7,t) = .
(52 + 7%2152)3/2

ret

- and
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PP ' =v(t—t") = BR, P'Q = PP'cos(9) = BRcos(0),
PQ = BRsin(9) = BRE = Bb; QO = R— PP' = (1 - B.A)R
r2 = Q02+ PQ? = (1 - Bn)2R2 = r? — 3262 = (vt)2 + b2 — 22 So,
ré = 7_2[b2_‘>|' 727]2752] — ["32R2]ret
and Z.(n — B )ret = sin(0) = % so that
Ex:q[f.(ﬁ—m by

~ M2 4242421372 (44)

~213R2

ret

20



Power radiated

?(?,t).ﬁ: power crossing a unit area, at time ¢, of a surface that
incircles the radiating particle. n is the normal to unit area.
The total energy radiated through the unit area is:

_|_
W = / dt—S(m t).n —/ Oodt/[ligﬁ]ret

— 0
So,
dW
dt
This is dP(t")/dA or 1/R2dP(t')/dS2 so the instantaneous power ra-
diated at time ¢’ per unit solid angle d2 is given by:

dP(t)
dS?2

= [k S .1 ret

H P
= [k S -nRQ]ret

21



From now on, consider only radiation field i.e. R large — this is the

“far field” approximation, then

S7A = “[E x (ax E)].a
41

_ ﬁ[EQ — (7. E)?].

. R —
Consider n. E':

A E o« n.n x_[)(ﬁ—ﬁ)xg]} B
o« A )7 - 3) - [7.(7 — ?)LB}
x (A 8)HA—B)—(1— F.a)3)
= o.
Hence,
Sﬁ:FiE%:q2|ﬁxKﬁ—ﬁ)X§W2

47 Are kO R2

i dret

(45)
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) . -
dP (¢t — 2 1A x [(n — x (1|2
() _ 2B ]y = L [ 1B = B) x )
ds? 47c K

B dret
This is the power radiated per unit solid angle in terms of the charge

proper time ¢'.

If we wants to know dP(t)/dt the power radiated per unit solid angle
at the time ¢t it arrives at the enveloping surface, then one must trace
back to the associated ¢’ time (retardation).

Note also that dt = dt'k,e; — if a particle is suddenly (dirac-like)
accelerated for a time At = 7, a pulse radiation will appear at the
observer at time t = r/c and the pulse duration will be At = KyetT.
Energy is conserved: total energy radiated=total energy lost by the
particle

BUT Tng,) = Tliretdgg(zt); Energy radiated by unit of time = Kyt
times the energy lost to far-field per unit time.
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Instantaneous rate of radiation

Pt = .

Ax[(7—B)x 8P

T 46 /OW d0sin(6)

7wc JO

A x[(@—B)x B

KO

|<ﬁg><n— )—(1—Bn)ﬁl2
I(ﬁ_@)(n—ﬁ)—nﬁlz

(7 g) [1—2nB+62]—2ﬁ:ﬁ(nﬁ)(n—ﬁ)+m262
(7. 8)2[1 — 2. F + 52] — 26(7. ) (7. § — B.5) + 1262

. H/\
Using 8.n =1 — k we get:

Ax[(F—B)x B2 =

2. 8)2 4 26(B. B) (7. B) + k232, (46)

24



So,

Py = Lon [l d@sm(@)—[m 32+ 208 ) (F.5) — (B .2)?)
2 2(3.8)8m; 1 6269%%]_
= 26/0 ddsin 6 /<;3+ 2 - — : (47)
Recall k=1 —ﬁ.fﬁ,: 1 —cosf, and let
_ (™ sin6db 2 A4
"= /o (1-8.2)3 / (1—Bu)3 (1—62)2_27
(7 msingdd 191 _8 B
fi = /O (1_3.73/)4_365% 3(1_62)3 B’ﬂ’a
™ ngn;singdd 19 25'j+(156—}§8% 2
= i 9% _ —0° _ £, 6(5.. 23.3.
Kii = ) o Gy~ 40w —3(1_ g8 3" Pt O AR

= P(1) = L1521 +2(5. 5)51 — LEEIK).

25



explicit I, J;, and Kj;;:

27 . 16 A
P() = L 129252+ 295616:(5.5) — 24*(5y; + 6728, 88|

Pl 4o, 16 6,2 7o 2 4o 207 A2

= L 129%2 4+ 555 6)% - 54187 + 642(F . 67
(32_ 3 3
2 ) —

= %[v462+76(6-6)2]
2q2 . > 2 . .

= 5811 -85 + (5.5)2| = 240182 - 572(1 - cos? @)
2 E . 2 2 . — e

= T 01 - FPF7sin? @] = T 018 — (F x §)7] (48)

This is the relativistic generalization of the Larmor’s results (to
recover the standard Larmor power consider 8 — 0).

26



example 1: radiative energy loss from a linear accelerator

—
In linear accelerator (or “linac”), g | ﬁ In order to calculate P(¢),
we need to evaluate 3. From p = v8mc we have:

p = me(¥8 +~8) = me[(v386)3 + 18]

2
= e (15 +1) A= (49)
So
/ 2 92 -2
P(t) = Z—52” [JDJ Eq. (14.27)]

Since P « m 2 lighter particle are subject to higher losses. The
rate of momentum change is proportional to the particle energy
change:p = dFE/dz (consider particle being accelerated along the
z-direction).

27



The question is for what energy gain does radiative effects start to
influence the dynamics. Let P.;+ = [dE/dt]et be the power associ-
ated to the external (accelerating force) then the radiative effect
are comparable to external force effects when:

Prag  P{) 2 ¢ [1 dE] .
P..i vdFE /dz  3m2c3 v dz lret '
Consider e-: typically v ~ ¢, and g = e then

Praq  2€2/(mc?) [dE
Pt 3 mc2 [d,z]ret

SO P.,q ™~ Pyt if dE/dz ~ mc?/re = 0.511/(2.8 x 10715) =2 x 1014
MeV/m

compare to 100 MeV/m state-of-art conventional accelerator or to
30 Gev/m plasma-based accelerator *; we see that radiative effects
have negligible impact on the dynamics of e- beams.

*W. Leeman, et al., Nature Phys. 2, 696-699 (October 2006), also The
Economist, September 28th, 2006
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example 2: radiative energy l0ss in a circular accelerator
. . . . ﬁ %
In circular accelerator acceleration is centripetal: 8 L (3 so

— - i 32
2 (F x ﬁ)2=62(1—62)=%

So the radiated power is:

2q%c 4 _ 2q c E 14
p(ty = 20 Ay
(t) = S5 (Bt =S558 |
where FE is the total energy. The revolutlon period is T = 2w R/(Bc),

and P = % So the radiative loss per turn is:

2 E 14 27R
AE = PT = —£B4 [ 2] T
mec Bc

that is:

E
o2

AE = 47”1 53[ ]4 [JDJ Eq. (14.32)]
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Consider an e- synchrotron accelerator, the energy loss per turn and
per electon is:

AE247T62( E )4.

3 R \imc?
Take E =1 TeV, R=2 km we then have:

AFE [eV] =

1 €<E
3eg R

For protons however we gain a factor (me/mp)* = 1/1836% so

4
2) = 442 TeV Il
mc

AEproton ~ 4 eV

High energy physics circular accelerator use proton (or ions) reasons
for Tevatron at FNAL or LHC at CERN. One can however use e-/e+
storage ring as a copious source of radiation for use or for *cooling”
—radiation damping in the internation linear collider proposal.
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Field line associated to a linearly moving charge

Parameters
House — |

RESET ABOUT BuUIT ‘




Field line associated to a moving charge in circular motion

Circl Parameters
irce — | Relative Velocity 0.9

QuIT ‘ Radius 20.0

ABOUT
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Angular Distribution of radiation emitted by an accelerated charge

dP() _ ¢ |ax [ B) x 1P
dS?2 4rc /{5_> . _>
_ R H2R(BA)E0) —yHBA) g
dme K2

where we have used Eq.46.
Case of linear motlon

—

ﬁ .n = (3Ccosé, 6 nA=pcosh, k=1— Bf.An=1—pFcosh, and numer-
ator of dP(t')/dS2 is:

B32[k2 4+ 2kBcosh — (1 — B32) cos? 0]
= B2[(k° 4+ 2kBcosO + B2 cos? ) — cos? 6]
= (2[(k 4+ Bcosh)? — cos? ] = 32sin? 0. (51)
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dP(t")  ¢?B°  sin?0
dQ  4mc2(1— Bcosh)® DI, Ea.(14.39) 52)

The location of peak intensity are given by:

0 d sin? 6
df \ (1 — 3cosh)>

sin (0) (2 cos (0) +3 8 (cos (0))? — 5 )

= 53
(1 — BcosH)*4 (53)
whose solutions are:
1
[cos bl = 5 [-1+ (1 +1569)1/7] (54)
Only [cos#]4 is viable since we must have |cos(6)| < 1. So finally
1 — 1
f+ = + arccos ﬁ[_l + (14 1562)1/2]] b1 o (55)
8

these are locations of maximum in power.
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Angular distribution for the case of linear motion
3=0.0001 B=0.1 3=0.25

(X

B=0.5 3=0.99
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Ultra-relativistic limit: as the 8 — 1 the intensity angular distribution
is contained within small angle (so § <« 1). The power angular
distribution then becomes:

dP(t/) QQBQ 92 B q2/8'2 3292
dQ  4wc? (1 — B(1 — %))5  4nc22(1 — B) + B62))5
2 102
~ 88 770 [JDJ, Eq.(14.41)]. (56)

mc? (1 4+ ~262)5
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Comparison of exact #-dependence (solid line) with ultra-relativistics
approximation (dash line) for two cases of (:

B=0.9
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Case of circular motion

snapshot of motion taken at time ¢.

cos 6n — sin 00
sin 6 cos ¢n + cosf sin ¢ — sin o

8) W)

Thus g.n=pcosd, 3.8 =0, and g.n = FsSinfCcoso
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dP(t") ¢ 32 [1 sin? 0 cos? ¢

dQQ 41c? (1 — Bcosh)3 v2(1 — Bcosh)?
Unlike linear motion, the power angular distribution peaks at 6§ = O.
Considering the ultra-relativistic limit (3 — 1, 6 < 1).

dP(t) _ §q2 32 NI 4~202 cos? ¢
A2 mc2(1+4+262)3 (14 ~262)2

] [UDJ Eq.(14.44)[57)

[JDJ Eq.(14.44){58)

3=0.05 3=0.2 B=0.5

XD O D <>

(distribution evaluated in the plan ¢ = 0)
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A part from a different in the intensity distributions for linear and
circular motion, there is also a difference in total radiated power:

25 953.0
PlLinear = gq m c'p
20 42 292 53 92.0
Poircular = gq cy =§q m-cyp
Thus
PCircular: 2
PLinear

For a given applied force, there is 72 times more radiation energy
if the force is applied perpendicular to the charge’s velocity that is
applied parallel to the velocity.
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Radiation Spectrum

Go in the observer’'s frame:

dP(t) 1 dP(t)
dQ k() d
2 [lax (- B) x 8112
q n X |(n — X —
= 5 =[A®F (59
dc K
_ dret
wherein
— C —
A(t) = \/—[RE]ret (60)
%y
to obtain the power spectrum of the radiation we need to work in
_>
the frequency domain, so decompose A as:
1 +o0 :
A(w) = — dt A (t)et?, (61)

\V21m J—00
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and reciprocally:

— 1 +o0 — -
A(t) = — dw A (w)e ™t 62
== | dwAW (62)
From Parseval's theorem the total energy radiated per dS2 is
dW +00 ~+00
fo= alA®P =" " dlA@]P (63)
d<2 —00 —00
If A(t) € R, then A*(w) = A(w) and:
dW o0 — 2
v 2/ dw| A 64
o =2, AW (64)
So the radiation spectrum per unit of solid angle is:
d21(n,w) 5
’ = 2|A 65
o, = 2AW)| (65)

é
Thus we need to evaluate A(w)
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200 Zm n x [(n ;35) X 3] (66)
_ dret
and so,
g e |axiG-B)yx Bl
Aw) =5 /_ -t — ¢ (67)
_ d ret

since the quantity [...] must be evaluated at the retarded time, let
/
dt = k(t')dt' and t =t + %’5) then the integral becomes:

— —
too 7 n— - R(t)
Z(w) _ q / dt/n x [(n—B) x B]ezw(t’—l— =) (68)
2m\/2¢ /-0 K2
In the far-field regime (large |z’|) we have: n = ESSM(OIN T con-

T -7 )] —

stant in time. And R=2xz— 7.7+ O(1/x).
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In the far-field regime the argument of the exponential rewrites:
R(t) n. 7 (t)
C

= = jw[t' + —2] = jwz + iw[t’ —

] (69)

we henceforth ignore the term Jwx since it has no contribution (the
final result is o |A(w|?) and define

n.r (t
=(t) = iwlt — Ty (70)
C
we have
n —
OO - —
A =L [t G- D xBlzw,
27‘(‘ K2
and the intensity distribution takes the form
N
d21(7 2 | oo Ax[(A-B)x Bl =]
dS2dw 472¢| J—o0 K
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To follow JDJ, let's show that the vectorial quantity in the integral
can be written as a time-derivative, in the far-field approximation.
Consider

ix (fx B)

(73)
K
and let’'s compute
d [ﬁ % (7 X ﬁ)] _ (kA (1 - R)A - 52)5 _4[(1 = k)i — B] .
dt K K

It |s stralghtforward (see Eq. 37) to show that n « 1/R and & =
—6 N — ﬁ n——ﬁ n+ O(1/R). So

o= {((5 . —0- 8la+ (FAIA - w3 - 5]}
— iz{ Br+(B.A)H— B)}—I—O(l/R)— : {nX[(n—B)x ﬁ]}-
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So the vectorial quantity is a time-derivative and we can write:

+o0o n Aix G

Aw) T[Tl | P =

27w\ 2¢ J—o0 dt K

- —~ — —+ o0
— —+ o0 —
q n X (n X ﬁ) e:(t) o ’LCL)/ dt |:’ﬁ, < (’ﬁ, ¢ E})} e:(t)

27‘(‘\/ 2c R —00 —00

The first integral is zero (in principle on should introduce a decay

term e €ltl with ¢ > 0, perform the integral and take the limit

e — 0).We finally have:

d?1(n,w) - q2w?
dQdw — 4n2c

—+oc0
/ dt
—00

Nota: [n x (n X ﬁ)] = Bsinf =

AT (1) 2

C

7 x (7 x B)]elt'= (75)

— —
n x G| where 6 = /(n, 3).
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@] 3
|

M
l_

Case of circular motion

Sin 0y + cos 6z,

Blsin(wot)z + cos(wot)Zz],

Sy &)

Y

X r = —Sinfz 4+ cos0y.

(76)
(77)
(78)
(79)
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Ax(xB) = (A.B)a— B
Blewotcod + cupt(ch — 1)Z — cugid

= Bl=swyt€) + cwotspeL] (80)
Let's now consider the argument of the exponential function =.
First we note that n.7 = rcosécos(n/2 — wot') = rsin(wgt’) cos b
and

~ —
n.r

= —iw@ - 2Dy = o — gsin(wot’) cos 6] (81)

Also if P catch an impulse of radiation from q: ¢’'s radiation is
confined in forward direction, 6 is small, and the pulse originated
near wot >~ 0. Under these approximations:

é
lim n n — —wnte Oe 82
9<<1,wot<<1n x (nx B) = p(—wote) + 0ey) (82)
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and,

1 r 1 62
im = = = t’—— #)31(1 — —
B e e T 0N (R a)
Bt/ 1r
- {(1 — Bt + — ——(wot’)3
wt' . 5 2 3
= —(7 + 56 )+ (w t")”. (83)
The spectral energy density is:
d2T q2w2 2

+o0 =
/ dtB(—wote) + 0, )e=
— 0
2

dQdw  4n2c

— Aj(w)g + AL (w)ey (84)

T his displays the two polarization associated to the radiation. Nota:
| and L polarizations are also respectively refer to as o and =-
polarizations.
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A w 00 t i< (( _2—|—02)t—l—i(w t’)3]
|| — q dt WO 2 Y 3""0 0]
(AJ_) 2/ J—oo ( / )6 - (85)
let z = w‘;}gﬁ dt = * \/v—2 + 02dx; and let ¢ = li[ -2 4 92)3/2,
then
—2 2
Afw) \ _ gw gt [ (70 )75 31l (ge)
Al (w) 2my/c J—co (v 2 +0%)1/29 L 1
we have the identity:
+00 : 3 27 T
dt i(xt+at>) _ A.
/—oo © (2a)1/3 ! (3&)1/3 ’

where A; is the Airy function, Note also that A;(z) = /32K /3 (%x3/2>.
Thus:

too  3er 1 2 3¢\%/3| 2
/_OO dpeintletza®] — (3£/2)1/3A {( §) ] :\ﬁKl/:”(g)' (87)
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For the other integral. Note that

[T aueierte = 2L [T ikt g = 2T g
—00 i dr J—oo (2a)1/3 "\ (3a)1/3 )"
The prime denote the differentiation w.r.t. total argument of A;.
Inserting a = &/2, and z = 3£/2 we get:

+oo . 2/3
/ xezgﬁ[x+§x3]dx _ 2T A {(35> ] = —i%K2/3(§).(88)

0 @/ |\ 2 iV3
where we have used: Aj(z) = = /32K,/3 (%x3/2>. So the spectral
intensity per unit of solid angle takes the form:

d?1
dS2dw

= A (W)[*+ AL (W)[?

2 2
= 5 (;"O> (2 +6%)? [K§/3<s>+7_2 - 92K1/3<£>]



or, introducing ¢ = 32 [y ™2 + 62]3/2 = S 2[1 ++262]3/2:
21 02 o
= K K
dS2dw T Y v=2 4+ 62 1/3(5)]

wWww

d1/(dQdw)
d?1/(dQdw)

A
7
i
=
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N

d?I/(dQdcw)

o
=2}

o
~
T

0.2

High frequency radiation occupies 0 < v~ 1 (<« ~~1 for w > w) and
low frequency radiation occupies 6 > 7_1. It is usual to also define

a critical angle as 6. = % (%)
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For low frequency w < we, the frequency spectrum integrated over

the solid angle is:

dl
dw

R
N
N
>
o

~ 2 o 2[§2K§/3(§)]0:O°

£(0) = 2%6 < 1 so that

2 w \2/3
(6K 2/3()]5=0 = [%} P (7 )

So

dI 6 g2 ( w )1/3 6 ¢2 o 2 1
— ~ = ——7 X W
dw T C 2we T C 373w

for w < we, SO it is very broad ~-independent spectrum.

(89)

(90)

(91)

54



Angular distribution: ,
we need to calculate fé’odw%. Do the variable change ¢ =
Lw[4=2 4 92]3/2 then:

3wo
dl L 3(]2 3(.4.)0 o0 2 K2 92 K2 d
9 g2 Y2wo 7n2 52 7292
w2 e [14 (10)2]5/2 [144 + 144 (1 4+ v262) (92)

where we have used the identity:

o0 2 1—4 2
/ w2K3(aw)dw =_" H
0 32a3 cos(mu)
T hus we finally have:
dl !’ q2 75(4)0 5 ’)/262
P 14— JDJ, Eq.(14.80
dS? 16 c [’Y_Q _I_ Q2]5/2 —I_ 7(1 _I_ 7292) [ g ( )]
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The total energy radiated is AW = [dQ% = 27 [ d9% the integral
on 6 should be within [—7, 7] however because we did a small angle
approximation and since dI/dS2 is significant only for v < 1 we do

this integral from [—o0, oo]:
oo dl
AW = zw/ o
0 do

7mq? +o0 1 5 262
= —q—75wo / [ + = i ]

8 c —oo [(14~202)5/2 ° T(1+ ~262)7/2
_ Tmg? 5., 4] _Tmg® 4
— g .Y [ + 15W] 6 o wo [1 + ] (93)

There is 7 times more energy radiated in the ||-polarization than in
the L-polarization. The total energy radiated is

2
AW = ——’y wQ

where wg = ¢/r.
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Let show that the previous result is in agreement with the radiated
power associated to circular motion we computed earlier in this

chapter.

A Wcirc

21 (2 ¢° 5.5\ 2m
pP..—— == -
czrcwo <3m2037 p .
2 ¢° 2\22T _ 4ATmq° 4 o 3
— mrwg)— = ——~ " rw
3m263’7 (7 O) 0 3 37 0
47Tq2 4

(94)
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The dI/dw angular-integrated spectrum was derived by Schwinger *

to be:

dl ¢ w [too
— = \/5—7—/w dz K5 /3().

dw C We We

1

091

dl/dw (arb. units)

o
)

o
[

[
5o
r‘v

ww
(o3

“Phys. Rev. Lett. 75, 1912 (1949)

P n P S S | n PR PR S
10" 10° 10" 10

(95)
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Case of periodic circular motion:

The results derived in the previous pages pertains to instantaneous
circular motion, for which the spectrum is a continuum. If the
motion is periodic, the associated spectrum is discrete. The tool
for analyzing this type of motion are the Fourier series. First we
note that the period measured by an observed in the far field (T) is
the same as the period of the particle motion (77). We now have
to introduce the Fourier series decomposition:

— c . — n=+too_, ot
A(t) = \/4—[EE]ea:t = Z Ape 0Y
0

NnN——00

where,

—
An

“o /27T/w0 Z(t)einwot
21 J0
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Following what we did previously we can show:
— q wO ) 27'('/(4)0 N . — . (t—A —>)
Ap=+V2r —inw / dtn x (n x B )e'mwolt—n-T
" om/Bean w0l |, (A 5)

where the 27 come from the difference in normalization factor
between the Fourier integral transform and series.
The spectrum is now discrete w = nw with n € N.
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Thomson & Compton Scattering

“Scattering” of an e.m. wave by a charged particle (say e-). But
e- has no surface — radiation is not really scattered. Radiation
emitted by the e- as it oscillates in the incoming radiation field is
the “scattered” radiation.

In term of photon: photon with wavelength )\ strikes a stationary e-
and bounce off with wavelength ).

P+ Py = PSS+ P, (96)
ol P& 4 Py — P9 (97)

So the norm is:

mic? = (P + P§‘ — j)(P —at+ Pya— P%a) (98)
remembering that for a photon P,P* = 0 we finally end up with

$P€_7O¢ - P&Pe_,a - q(/)fpe_’a — O (99)
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we have:

Peea = mc(Ey/2) — De—. P~y =mEy (100)
EE Eny /

Py = 7’7 (;Y — Py P o = —Pyp COSO + CQ’V (101)

Pe—oP$ = mEy. (102)

Taking E, = % (and similarly for 4/) we finally obtain:
h
me
This is the usual Compton scattering. Thomson scattering is the
non relativistic limit of Compton scattering (so take ¢ — oo) SO
A=\,

Cross section for Thomson scattering:

The cross-section is defined as:

A— X =—(1-cosh). (103)

E radiated/time/solid angle
incident flux/unit area/time

o

(104)
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N
e- is at rest 5 =0, and

. = — .12
iP(ty 2 [ax[(— 8)x B8] .
dS?2 - 4rc K2 ( )
2 [ix[ax ] o2
/8_>Q é n X |n X . e 2 . 2
o 5 = 4—7TC6 sin© © (106)
— —
where ©/(n, 8). Introducing the acceleration @ =c¢3 we have:
/ 2
b)) _ ¢ gn2e. (107)
dS?2 473
Also note that in the NR limit ¢t — ¢’ so dgg) = d};g). We now need

to find « .



Let's consider an incoming plane e.m. wave of the form f(?,t) =
eFe!(k-T—wt) then we have
T (1) = SeEget( k-7 —wi) (108)
m

we only consider the E-field contribution since 3 = 0. Let ? = kz.
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From the figure we have:

€ = COSYT 4+ sinyy (109)
n sin 6 cos ¢z + sin@sin ¢y + cos 0z (110)
n.a asg(cycy + 8y8p) = asgCy_4 (111)
= asinfdcos(y — @) = aCcosO. (112)
Thus

sin°® = 1 — sin? 0 cos? (v — o). (113)

t-averaged emitted power scales as (a?(t)):.

1 /eFg\?
(a?sin2©); = > (6—0) (1 — sin260cos2(v — ¢)]. (114)
m

If incident radiation is not polarized:
1
(cos? (¢ — ¢) sin? 0)y = 5sin2 6. (115)
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So

1 /eEg\2 1
2 i 0 ..
Sinc © =—<—> 1 ——sin<é@ 116
(a Vb >\ [ 5 ] (116)
So finally the radiated power per unit of solid angle takes the form:
dP cE2 [ e2 2 C
_ “&o 201 — 2
— = 14 cos0| = 1+ cos<0). 117
9 = Ten <m02> 1+ TG ). (117)
The incoming Poyinting flux is:
s = “F«H* (118)
37
the time average power per unit area is:
dP
=S5=_"F2 (119)

d—a 87
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So the cross-section is:

C’I“2 2

= 51 + cos? 6] (120)

aQ = dPdQ L E3

This is Thomson
IS:

= %rg(l—l—cos 0) (121)

scattering formula. The integrated cross-section

do 1671
=/ dqs/ 0 sin =2 T2 (122)
Q- 3 2°¢
87T 2

—
3

(123)
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Thomson and Compton scattering apply to a free-electron. Let’s
now consider a bounded electron whose dynamics is described as a
damped oscillator model:

THIv+wiz =21E. (124)

As before consider E = éEgei(k-7—wt) Take 7 = ZTge ™. We
then have:

—

(—w? —iwl + w%)?o = €%Eoei k@ (125)

assume k.7 = 0, that is |z| < A (e- orbit is small compared to
radiation wavelength). Then

e
—F
Ty~ 0 g (126)
wh — w —wwl
and
2 4
a = —wxr = la|=(—F : 127
o (m 0 (W — w2)2 + w2r2 (127)
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2 (%EC’)Q
la<| = Ry 5 5 (128)
(52)" + [(a> - 1]
Same as before but modified to include a@’'s denominator. So finally
for a bounded e-, we get:

dP 1 + cos?6
o) = pertrg T 129
w
()] + ()
and the cross section is
do 1 1 4+ cos?6
— =rf > , (130)
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The Iimit w > wg, w > I corresponds to Thomson scattering, while
the limit w < wg, w > I gives the Rayleigh formula:

dO' 1 2

— =

dS?2 2
So high frequencies are scattered more preferably than low frequen-
cies. This explains why the sky is blue...

4
<i> [1 4 cos? 6] oc w? (131)

WO
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