### Amplifier and feedback systems

- Amplifier system
- Feedback system

### **Amplifier**



- **Function:** amplify the "signal" power → amplifiers are powered by an external source [here:  $V_{CC}$  and (or)  $V_{EE}$ ]
- Input of amplifier characterized by the input impedance  $Z_e = \frac{v_e}{i_e}$
- lacktriangle The amplifier **output** acts as a voltage **source** characterized by its **output impedance**  $\mathbf{Z}_{\mathbf{s}}$ 
  - !  $Z_s$  = Thévenin equivalent resistance of the circuit "seen" by  $R_L$

# Gain(s) definition

#### Voltage gain:

Since  $Z_s \neq 0$ , voltage gain depends on load

Gain "in open circuit": 
$$A_{v} = \frac{v_{L}}{v_{e}}\Big|_{R_{L} = \infty} = \frac{v_{s}}{v_{e}}$$

Gain "on load":  $A_{vL} = \frac{v_L}{v_e} = \frac{R_L}{R_L + Z_s} A_v$ 



"composite" gain: (take into account 
$$A_{vc} = \frac{v_L}{v_g} = \frac{Z_e}{R_i + Z_e} A_{vL}$$
 Since  $\mathbf{Z_e} \neq \infty$ ,  $A_{vc}$  different from  $A_{vL}$  the output impedance)

**Current gain** 

$$A_i = \frac{i_L}{i_e} = \frac{A_{vL} Z_e}{R_L}$$

Power gain:

$$A_p = \frac{v_L i_L}{v_g i_e} = A_{v_c} \cdot A_i$$

### Ideal amplifier

- Gains independent of amplitude and frequency of input signal
- Entrance impedance high ⇔ low perturbation on the source operation
- Exit impedance low ⇔ small perturbation of the load

#### Real life...

- linearity regime : distortion of signal occurs for high amplitudes Nonlinearities of some electronics characteristics
- limited frequency bandwidth: gain is a function of signal frequency internal capacitance of some components capacitors used in the circuits input and output impedances depend on frequency

## Feedback Systems

### Closed loop:

Measure output

 Compare to desired output signal

Correct input accordingly



H(s)

→Output

#### Open loop

- Design or characterize the transfer function of the system
- Apply a proper input so that output signal is the desired value

### Feedback Systems (real life... almost)

### Open loop

- Adjust flow and on/off until water reach expected value
- Your eyes are closed



#### Closed loop

- Set of constraints
- Measurement (trust your vision



## Voltage feedback

Sample part of the output voltage and feedback as input



• Gain of the system is (assume  $A_0 >> 1$ )

$$A = \frac{v_{out}}{v_{in}} = \frac{A_0}{(1 - A_0 \alpha)}$$

problem is  $A_0 \alpha$  close to 1

### Voltage feedback

Gain stability

$$\frac{dA}{A} = \frac{dA_0}{A_0} - \alpha \frac{dA_0}{(1 - A_0 \alpha)} = \frac{A}{A_0} \frac{dA_0}{A_0}$$

- Small change in A0 gain results in change in A
- Input impedance changes

$$Z_{in} = \frac{v_{in}}{i_{in}} = \frac{v_{in0}}{(1 + \alpha A)i_{in}} = \frac{A_0}{A}Z_{in0}$$

Output impedance also changes

$$Z_{out} = \frac{v_{out}}{i_s} = \frac{Av_{in}}{i_s} = \frac{A}{i_s} \frac{i_s Z_{out0}}{A_0} = \frac{A}{A_0} Z_{out0}$$

### Current feedback

Sample output current, convert to voltage and add to input



$$i_{out} = \frac{A_0 v_{in}}{R_L + Z_{out0} + (1 - A_0 \alpha) R_f}$$