Op. Feedback and Op. Amps

- Operational Feedback
 - Current versus voltage feedback
- Op Amp
 - Properties
 - Common Op-Amp-based setups

Op-Amps.

Type of feedback

Convention for voltage and current feedback:

Sample output	Type of input	<u>Name</u>
Voltage	Voltage	Voltage feedback
Current	Voltage	Current feedback
Voltage	Current	Operational voltage feedback
Current	Current	Operational current feedback

Operational Voltage feedback

- Input impedance of A0 very large, no current can flow into the amplifier
- Input must cancel the feedback

$$i_{in} = -\frac{\alpha V_{out}}{R_f}$$

Input resistor sets V_{in}

$$i_{in} = \frac{v_{in} - v_A}{R_i}$$

 Input current must all go through the feedback resistor

$$i_{in} = \frac{v_A - v_{out}}{R_f}$$

Amplifier gain is

$$\frac{v_{in} - v_{out}/A_0}{R_i} = \frac{v_{out}/A_0 - v_{out}}{R_f}$$

• So

$$A = \frac{v_{out}}{v_{in}} = \frac{1}{(R_i/R_f)(1/A_0 - 1) + 1/A_0}$$

P. Piot, PHYS 375 - Spring 2008

Operational Current feedback

Resistor is used to sample the output current

$$i_{in}R_f = -(i_{in} + i_{out})R_G$$

$$i_{out}/i_{in} = -(R_f + R_G)/R_G$$

Operational Amplifier (Op. Amp.)

Transistors (we will learn about these later)

Ideal Operational Amplifier

The ideal op-amp is characterized by 7 properties

 Knowledge of these properties is sufficient to design and analyze a large number of useful circuits

Basic op-amp properties

- Infinite open-loop voltage gain
- Infinite input impedance
- Zero output impedance
- Zero noise contribution
- Zero DC output offset
- Infinite bandwidth
- Differential inputs that "stick together"

Fig. 12-6 Packaging for industry standard op-amp (741) in (A) DIP and (B) metal can packages; (C) dual op-amp such as 1458 device.

P. Piot, PHYS 375 - Spring 2008

■ Property No.1: Infinite Open-Loop Gain

- Open-Loop Gain A_{vol} is the gain of the op-amp without positive or negative feedback
- In the ideal op-amp A_{vol} is infinite
 - Typical values range from 20,000 to 200,000 in real devices

■ Property No.2: Infinite Input Impedance

Input impedance is the ratio of input voltage to input current

$$Z_{in} = \frac{V_{in}}{I_{in}}$$

- When Z_{in} is infinite, the input current I_{in}=0
 - High-grade op-amps can have input impedance in the TΩ range
 - Some low-grade op-amps, on the other hand, can have mA input currents

■ Property No. 3: Zero Output Impedance

- The ideal op-amp acts as a perfect internal voltage source with no internal resistance
 - This internal resistance is in series with the load, reducing the output voltage available to the load
 - Real op-amps have output-impedance in the 100-20Ω range
- Example

■ Property No.4: Zero Noise Contribution

- In the ideal op-amp, zero noise voltage is produced internally
 - This is, any noise at the output must have been at the input as well
- Practical op-amp are affected by several noise sources, such as resistive and semiconductor noise
 - These effects can have considerable effects in low signal-level applications

■ Property No. 5: Zero output Offset

- The output offset is the output voltage of an amplifier when both inputs are grounded
- The ideal op-amp has zero output offset, but real op-amps have some amount of output offset voltage

■ Property No. 6: Infinite Bandwidth

- The ideal op-amp will amplify all signals from DC to the highest AC frequencies
- In real opamps, the bandwidth is rather limited
 - This limitation is specified by the Gain-Bandwidth product (GB), which is equal to the frequency where the amplifier gain becomes unity
 - Some op-amps, such as the 741 family, have very limited bandwidth of up to a few KHz

■ Property No. 7: Differential Inputs Stick Together

 In the ideal op-amp, a voltage applied to one input also appears at the other input

Op. Amps Rules: The Golden Rules

- (I) The output attempts to do whatever is necessary to make the voltage difference between the two inputs zero.
- (II) The inputs draw no current
- This golden rules obscure what is really going on but they greatly simplify the analysis of circuit based on Op. Amps.

- 1. (+) is grounded so Rule I implies (-) is also grounded,
- **2.** So the voltage across R_2 is V_{out} and the voltage across R_1 is V_{in}
- 3. So rule II implies:

$$V_{out}/R_2 = -V_{in}/R_1$$

Or gain is

$$A = -R_2/R_1$$

Voltage comparator

Voltage follower

- What is the main use of this circuit?
 - Buffering

Non-inverting amplifier

$$V_{\text{out}} = \left(1 + \frac{R_2}{R_1}\right) V_{\text{in}}$$

Inverting amplifier

$$V_{out} = -\frac{R_2}{R_1} V_{in}$$

Summing amplifier

$$V_{out} = -\left(V_1 \frac{R_f}{R_1} + V_2 \frac{R_f}{R_2} + \dots + V_N \frac{R_f}{R_N}\right)$$

■ Differential amplifier

$$V_{out} = \frac{R_2}{R_1} (V_2 - V_1)$$

Integrating amplifier

$$V_{out} = -\frac{1}{j\omega CR}V_{in} = -\frac{1}{RC}\int V_{in}dt$$

■ Differentiating amplifier

$$V_{out} = -\frac{R}{\frac{1}{j\omega C}}V_{in} = -RC\frac{dV_{in}}{dt}$$

$$I_{L} = \frac{V_{in}}{R}$$