Lesson 3: RLC circuits & resonance

Inductor, Inductance

Comparison of Inductance and Capacitance
Inductance in an AC signals

RL circuits

LC circuits: the electric “pendulum”

RLC series & parallel circuits

Resonance

P. Piot, PHYS 375 — Spring 2008



Inductor

L R magnetic
S . =g =— field

| —
Start with Maxwell’'s equation v« f - _oB .
at magnetic fiel
Integrate over a surface S (bounded by contour C) and Magnetic

use Stoke’s theorem: flux in Weber
R - B () '
jijE.dA = E.dZ\:—Ha—dA __o®

. /
The voltage is tV\ -
oD
VL

=—emf =—
/ Ot
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Inductor

Now need to find a relation between magnetic field
generated by a loop and current flowing through the
loop’s wire. Used Biot and Savart’s law:

N

dB="2TdI x*- = B I
4 r

Integrate over a surface S the magnetic flux is going to
be of the form

O=LI
\ Inductance measured
The voltage is thus in Henri (symbol H)
oD dl
VL =-— =] —
ot dt

Joseph Henri (1797-1878)
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Inductor

Case of loop made with an infinitely thin wire

=t 517
47

If the inductor is composed of n loop per meter then

total B-field is
B="-Lnl
4 .

Increase magnetic

So inductance is permeability (e.g. use
/ metallic core instead of air)
®=BA="L"Anl = L=""ap

‘ 4 4r \Increase number of wire

per unit length increase L
Area of the loop
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Inductor in an AC Circuit

VL :Lﬂ VT I —_— A
dT @) Vi L
4 |
— 7 =L —jalL Iy I,
)i e

* |ntroduce reactance for an inductor:

X, =owL
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Inductor , Capacitor, Resistor

Resistance = friction against motion of electrons

Reactance = inertia that opposes motion of electrons
X, =oL
1

wC X
Impedance is a generally complex number:

Z=R+iX

X, =-

Note also one introduces the Admittance:

— i Resistor 100 0 Inducter  100mH Capaciter 10pF
Y— —G"‘ZB 159.15 Hr 159,15 Hz
Z R=100 L) R=0L2 J_R 0Ly

Suscepmnce X=010 X = 100 02 | x=mo
Conducmnce =100 o0 £=100L) 290 Z=100L £ 907
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Inductor versus Capacitor

JOLIDVIV)

dOLINANI

.. .to the rest of %

Energy being absorbed by
the capacitor from the rest
of the circuit.

-+ |
. to the rest of C ==+ increasing
the circuit = voltage
| —

The capacitor acts as a LOAD

Energy being released by the
capacitor to the rest of the circuit

| —=
. to the rest of C ==+ decreasing
the circuit -~ voltage
~-— |

The capacitor acts as a SOURCE

Energy being absorbed by
the inductor from the rest
of the circuit.

—— increasing current

N\

voltage drop

—/

the circuit

increasing current —

The inductor actsasa LOAD

. . . o the rest of

Energy being released by
the inductor to the rest
of the circuit.

—~—decreasing current

the circuit g voltage drop

~
decreasing current —

The inductor acts as a SOURCE

P. Piot, PHYS 375 — Spring 2008



RL series Circuits

/i
V, =V +V, =RI+LZ—=(R+ia)L)]:>Z=R+ia)L=R+iXL
5
Vo 5
Vi ! 10V
| Vi

* For the above circuit we can compute a numerical
value for the impedance:

7 =(5+3.7699)) Q
| Z |=/5% +3.7699° ~ 6.262, © =37.02°
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RL parallel Circuits

1

1 1

[:]R+]L:K+_ Vet = (— +- L)V:>Z‘1:R‘1+(ia)L)_1

R L

El1—

it

R iw

—
10V jog L
60 Hz @

»

For the above circuit we can compute a numerical
value for the impedance:

7 =(1.81+2.40)) Q

1 Z |~ 3.01,

® =52.98°
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Inductor: Technical aspects

* Inductors are made a conductor wired
around air or a ferromagnetic core

« Unit of inductance is Henri, symbol is H

* Real inductors also have a resistance (in
series with inductance)

i'-“-r

Inductor symbols

3 3l

generic, or air-core iron core

------------
1 ]

g "Effective” resistance

~iron core | generic - ldeal inductor
i_allternatwe_] (newer symbaol) : L
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RLC series/parallel Circuits

| 200V
A0 He

630 mH * 120 V
bl Hz

‘-"{Ii'.

250 43 £ 0°

-“9 yin a 245.04 2 2 90"
v

-|:'
|

|
|.7684 kL) 2 90"

o - 120 V - - , 1
'-"'H" (%9 R%ﬂw‘._ 0 ]% 650mH ‘== 1.5 el 111 %‘ﬂ) -"-m% fu.% Ze ==
bl Hz s

250 Q £ 0° |.7684 k€1 2 90"

245.04 € 2 9D

P. Piot, PHYS 375 — Spring 2008



RLC series/parallel Circuits: an example

Compute impedance of the circuit below
— Step 1: consider C2 in series with L = Z1

G
|

{Il

L é 650 mH

::|.5LLF

1134?& Q

— Step 2: consider Z1 in parallel with R = Z2 4T pE
— Step 3: consider Z2 in series with C 20V ()
Let’s do this:
. 1 , 1 ,
Z, =il Lo———|=152334i Z,= =429.15-132.41i
Cw L1
i Z, R
Z,=27,— =429.15-629.79i
C.o
Current in the circuit is
I = r =76.89+124.86i =| I |=146.64 mA, /I =58.371°

3

And then one can get the voltage across any components
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LC circuit: An electrical pendulum

Ba ltala-' momerntarily

connectad to start the cycle g =— g
i=-—-

A +

— —t j

capacitor charged: voltage at (+) peak
inductor discharged: zero current

capacitor discharging: voltage decreasing
inductor charging: current increasing

capacitor fully discharged: zem voltage
inductor fully charged: maximum current

capacitor charging: voltage increasing (in opposite polarity)
inductor discharging: cumrent decreasing

Time —=

capacitor fully charged: voltage at (-) peak
inductor fully discharged: zero current

Time —=

capacitor discharging: voltage decreasing
inductor charging: current increasing

Time =—
lif—

capacitor fully discharged: zemn voltage
inductor fully charged: curent at (-) peak

Time  =—t

capacitor charging: voltage increasing
inductor discharaging: current decreasing
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LC circuit: An electrical pendulum

Mechanical pendulum: oscillation between

potential and kinetic energy

Electrical pendulum: oscillation between

magnetic (1/2L12) and electrostatic
(1/2CV?2)
energy

In practice, the LC circuit showed has
some resistance, i.e. some energy is
dissipated and therefore the oscillation
amplitude is damped. The oscillation

frequency keeps unchanged.

LC circuit are sometime called tank circuit

and oscillate (=resonate)

maximum potential energy,
zero kinetic energy

e e
-

Ma55

L

- -|.._‘
LS.

—-

Zarn otewtialenerq%;,
maximum kinetic ergrgy

potential energy = =——
kinetic energy = ====
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Example of a simple “tank” (LC) circuit

ODE governing this circuit?

dV
I I +I = Cd— —J‘th @) 0 uF == % [0 mH
2 2 |
ﬂsz Iz/+lV<:>d 12/+ : Vzﬂ
dt dt L dt LC dt

Equation of a simple harmonic oscillator with pulsation:

Or one can state that system oscillate if impedance associated to C and L
are equal, i.e.:

Lo=——
Cw

1

P. Piot, PHYS 375 — Spring 2008



Example of a simple “tank” (LC) circuit

 What is the total impedance of the circuits?

i

Z' =iLlo—-—=i(Lo-Lw)=0=Z =

Co

o

|0 uF =

% |00 mH

» So the tank circuit behaves as an open circuit at resonance!

* In a very similar way one can show that a series LC circuit behaves as a
short circuit when driven on resonance i.e.,

0

I
| !

L}

|
> |1,'r.-n‘D

L |
£

I:I|=

— |0 uF

[.,g | 0y mH
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RLC series circuit

2nd order ODE:

a0
RI + L 1 C =V / Voltage aAcross R
dQ capacitor
with I = CcU
PR V(O L
d U (t) dU (t) |
= LC + RC +U(t)=V (¢t o
dt’ dt ) e —C U
Resonant frequency still  “o = —\/— )
R
Let’s define the parameter ¢ = 5T
Then the ODE rewrites d°’U — 4 2é’d_U_|_ U=V
dt’ dt
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RLC series circuit: regimes of operation (1)

Let’s consider V(t) to be a dirac-like impulsion (not physical...) at t=0.
Then for t>0, V(t)=0 and the previous equation simplifies to

d°U du
+2¢0 —+aw,U =0
dt’ d dt

With solutions
U(t)= Ae™" + Be™'
Where the A are solutions of the characteristics polynomial is
N 4+20A4w; =0

The discriminant is
A=R°C°-4LC

And the solutions are

/’ti:%(—Zgi\/X)

P. Piot, PHYS 375 — Spring 2008



RLC series circuit: regimes of operation (2)

L
If A<O thatis if R <2, /—
Under damped C 1/

2
A=y (ij S o E
o2 |\2L) Le

U(t) is of the form

U(6) = e e oy pe

A and B are found from initial conditions.

If A=0 critical damping

U(t)= Ae ™
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RLC series circuit: regimes of operation (3)

If A>0 thatis if R > 2, /£
Strong damping C 1
2
R 1 R
A, =———ti] —— =—S+ijol -5
B 2L LC \2L

U(t) is of the form

U= e e g o]

A and B are found from initial conditions.

Which can be rewritten

U(t)= De” sin(\/a)j —5°t+ ¢)
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RLC series circuit: regimes of operation (4)

Over-damped Critical damping

=

 For under-damped regime, the

solutions are exponentially
Under-damped decaying sinusoidal signals.

The time requires for these
/AN oscillation to die out is 1/Q
\/ where the quality factor is
defined as:

1 |L

R\NC
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RLC series circuit: Impedance (1)

2nd order ODE: L
dl
V =Vy+V +Ve=RI+L— +— jld R
d’ I R dI 1 1 dV o
— I = v L
dt2 L dt LC L dt <‘>

Resonant frequency still  wy =

Let's define the parameter  —

) —
i

Then the ODE rewrites
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RLC series circuit: Impedance (2)

Take back (but could also jut compute the impedance of the
system)

d’l da , 1dVv

+20 —+ o)l =———
dt’ 4a’t L dt

Explicit / in its complex form and deduce the current:

1
—~ 0’1 +2ilwl + o)l = iza)V

I 0] 1

=— = =Y
V o, -0 +2idw 1)’
R+ Lo- . |
Cw
1

R\/1+Q2(x—1j
X
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=Y

Introducing x=a/w, we have

Y=




RLC series circuit: resonance

~ = “Values of O
SRR

—

N N O ™
I

amplitude (arb. units)
O O o o

an
o

|
|

phase (deg)

=100 . Ll s Ll . L

10 10 10° 10" 10°
x=co/c00

P. Piot, PHYS 375 — Spring 2008



RLC parallel circuit : resonance

* The same formalism as before can be applied to parallel
RLC circuits.

« The difference with serial circuit is: at resonance the
iImpedance has a maximum (and not the admittance as in
a serial circuit)
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