Lesson 3: RLC circuits & resonance

- Inductor, Inductance
- Comparison of Inductance and Capacitance
- Inductance in an AC signals
- RL circuits
- LC circuits: the electric "pendulum"
- RLC series & parallel circuits
- Resonance

Inductor

Integrate over a surface S (bounded by contour C) and use Stoke's theorem:

$$\iint_{S} \vec{\nabla} \times \vec{E} . d\vec{A} = \oint_{S \in C} \vec{E} . d\vec{l} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} . d\vec{A} = -\frac{\partial \Phi}{\partial t}$$

The voltage is thus

$$V_{L} = -emf = \frac{\partial \Phi}{\partial t}$$

Magnetic flux in Weber

Wihelm Weber (1804-1891)

Inductor

 Now need to find a relation between magnetic field generated by a loop and current flowing through the loop's wire. Used Biot and Savart's law:

$$d\vec{B} = \frac{\mu_0}{4\pi} I d\vec{l} \times \frac{\hat{r}}{r^2} \Rightarrow B \propto I$$

 Integrate over a surface S the magnetic flux is going to be of the form

$$\Phi \equiv LI$$

The voltage is thus

Inductance measured in Henri (symbol H)

$$V_L = \frac{\partial \Phi}{\partial t} = L \frac{dI}{dt}$$

Joseph Henri (1797-1878)

Inductor

Case of loop made with an infinitely thin wire

$$B = \frac{\mu}{4\pi} \delta l.I$$

 If the inductor is composed of n loop per meter then total B-field is

$$B = \frac{\mu}{4\pi} nI$$

So inductance is

 $\Phi \equiv BA = \frac{\mu}{4\pi} AnI \Rightarrow L = \frac{\mu}{4\pi} AnI$

Area of the loop

Increase magnetic
permeability (e.g. use
metallic core instead of air)

Increase number of wire per unit length increase L

Inductor in an AC Circuit

$$V_{L} = L \frac{dI}{dT}$$

$$\Rightarrow Z = \frac{V_{L}}{I} = i\omega L$$

$$V_{T} = \frac{V_{L}}{I} =$$

Introduce reactance for an inductor:

$$X_{L} = \omega L$$

$$+$$

$$P = -$$

$$-$$

$$Time \rightarrow$$

Inductor, Capacitor, Resistor

- Resistance = friction against motion of electrons
- Reactance = inertia that opposes motion of electrons

$$X_{L} = \omega L$$

$$X_{C} = -\frac{1}{\omega C}$$

Impedance is a generally complex number:

$$Z = R + iX$$

Note also one introduces the Admittance:

$$Y = \frac{1}{Z} = G + iB$$

$$Susceptance$$

$$conductance$$

$$Resistor 100 \Omega$$

$$X = 100 \Omega$$

$$Z = 100 \Omega \angle 0^{\circ}$$

Inductor versus Capacitor

Energy being absorbed by the capacitor from the rest of the circuit.

The capacitor acts as a LOAD

Energy being released by the capacitor to the rest of the circuit

The capacitor acts as a SOURCE

Energy being absorbed by the inductor from the rest of the circuit.

The inductor acts as a LOAD

Energy being released by the inductor to the rest of the circuit.

The inductor acts as a SOURCE

RL series Circuits

$$V_T = V_R + V_L = RI + L\frac{dI}{dt} = (R + i\omega L)I \Rightarrow Z = R + i\omega L = R + iX_L$$

 For the above circuit we can compute a numerical value for the impedance:

$$Z = (5+3.7699i)$$
 Ω
 $|Z| = \sqrt{5^2 + 3.7699^2} \approx 6.262, \quad \Theta = 37.02^\circ$

RL parallel Circuits

$$I = I_R + I_L = \frac{V}{R} + \frac{1}{L} \int V dt = (\frac{1}{R} + \frac{1}{i\omega L})V \Rightarrow Z^{-1} = R^{-1} + (i\omega L)^{-1}$$

 For the above circuit we can compute a numerical value for the impedance:

$$Z = (1.81 + 2.40i)$$
 Ω
| $Z \approx 3.01$, $\Theta = 52.98^{\circ}$

Inductor: Technical aspects

- Inductors are made a conductor wired around air or a ferromagnetic core
- Unit of inductance is Henri, symbol is H
- Real inductors also have a resistance (in series with inductance)

RLC series/parallel Circuits

RLC series/parallel Circuits: an example

- Compute impedance of the circuit below
 - Step 1: consider C2 in series with L ⇒ Z1
 - Step 2: consider Z1 in parallel with R ⇒ Z2
 - Step 3: consider Z2 in series with C
- Let's do this:

$$Z_{1} = i \left(L\omega - \frac{1}{C\omega} \right) = 1523.34i \qquad Z_{2} = \frac{1}{\frac{1}{Z_{1}} + \frac{1}{R}} = 429.15 - 132.41i$$

$$Z_{3} = Z_{2} - \frac{i}{C_{1}\omega} = 429.15 - 629.79i$$

Current in the circuit is

$$I = \frac{V}{Z_3} = 76.89 + 124.86i \Rightarrow |I| = 146.64 \text{ mA}, \angle I = 58.371^{\circ}$$

And then one can get the voltage across any components

LC circuit: An electrical pendulum

LC circuit: An electrical pendulum

- Mechanical pendulum: oscillation between potential and kinetic energy
- Electrical pendulum: oscillation between magnetic (1/2LI²) and electrostatic (1/2CV²) energy
- In practice, the LC circuit showed has some resistance, i.e. some energy is dissipated and therefore the oscillation amplitude is damped. The oscillation frequency keeps unchanged.
- LC circuit are sometime called tank circuit and oscillate (=resonate)

Example of a simple "tank" (LC) circuit

ODE governing this circuit?

$$I = I_C + I_L = C \frac{dV}{dt} + \frac{1}{L} \int V dt$$

$$\frac{dI}{dt} = C\frac{d^2V}{dt^2} + \frac{1}{L}V \Leftrightarrow \frac{d^2V}{dt^2} + \frac{1}{LC}V = \frac{dI}{dt}$$

Equation of a simple harmonic oscillator with pulsation:

$$\omega = \frac{1}{\sqrt{LC}}$$

Or one can state that system oscillate if impedance associated to C and L are equal, i.e.:

$$L\omega = \frac{1}{C\omega}$$

Example of a simple "tank" (LC) circuit

What is the total impedance of the circuits?

$$Z^{-1} = iL\omega - \frac{i}{C\omega} = i(L\omega - L\omega) = 0 \Rightarrow Z = \infty$$

- So the tank circuit behaves as an open circuit at resonance!
- In a very similar way one can show that a series LC circuit behaves as a short circuit when driven on resonance i.e.,

RLC series circuit

2nd order ODE:

$$RI + L \frac{dI}{dt} + \frac{Q}{C} = V \qquad Voltage \ across$$

$$with \ I = \frac{dQ}{dt}; Q = CU \qquad V$$

$$\Rightarrow LC \frac{d^{2}U(t)}{dt^{2}} + RC \frac{dU(t)}{dt} + U(t) = V(t)$$

- Resonant frequency still $\omega_0 = \frac{1}{\sqrt{LC}}$
- Let's define the parameter $\zeta = \frac{R}{2L}$
- Then the ODE rewrites $\frac{d^2U}{dt^2} + 2\zeta \frac{dU}{dt} + \omega_0^2 U = V$

RLC series circuit: regimes of operation (1)

Let's consider V(t) to be a dirac-like impulsion (not physical...) at t=0.
 Then for t>0, V(t)=0 and the previous equation simplifies to

$$\frac{d^2U}{dt^2} + 2\zeta \frac{dU}{dt} + \omega_0^2 U = 0$$

With solutions

$$U(t) = Ae^{\lambda_{+}t} + Be^{\lambda_{-}t}$$

• Where the λ are solutions of the characteristics polynomial is

$$\lambda^2 + 2\zeta\lambda + \omega_0^2 = 0$$

The discriminant is

$$\Delta = \mathbf{R}^2 \mathbf{C}^2 - 4\mathbf{L}\mathbf{C}$$

And the solutions are

$$\lambda_{\pm} = \frac{1}{2} \left(-2\zeta \pm \sqrt{\Delta} \right)$$

RLC series circuit: regimes of operation (2)

• If Δ <0 that is if R< $2\sqrt{\frac{L}{C}}$

$$\lambda_{\pm} = -\frac{R}{2L} \pm \left[\left(\frac{R}{2L} \right)^2 - \frac{1}{LC} \right]^{1/2} \equiv -\delta \pm \sqrt{\delta^2 - \omega_0^2}$$

U(t) is of the form

$$U(t) = e^{-\delta t} \left[A e^{\sqrt{\delta^2 - \omega_0^2} t} + B e^{-\sqrt{\delta^2 - \omega_0^2} t} \right]$$

A and B are found from initial conditions.

If ∆=0 critical damping

$$U(t) = Ae^{-\delta t}$$

RLC series circuit: regimes of operation (3)

• If Δ >0 that is if $R > 2\sqrt{\frac{L}{C}}$ Strong damping

$$\lambda_{\pm} = -\frac{\mathbf{R}}{2\mathbf{L}} \pm i \left[\frac{1}{\mathbf{L}\mathbf{C}} - \left(\frac{\mathbf{R}}{2\mathbf{L}} \right)^{2} \right]^{1/2} \equiv -\delta \pm i \sqrt{\omega_{0}^{2} - \delta^{2}}$$

U(t) is of the form

$$U(t) = e^{-\delta t} \left[A e^{i\sqrt{\omega_0^2 - \delta^2}t} + B e^{-i\sqrt{\omega_0^2 - \delta^2}t} \right]$$

A and B are found from initial conditions.

Which can be rewritten

$$U(t) = De^{-\delta t} \sin\left(\sqrt{\omega_0^2 - \delta^2}t + \phi\right)$$

RLC series circuit: regimes of operation (4)

For under-damped regime, the solutions are exponentially decaying sinusoidal signals. The time requires for these oscillation to die out is 1/Q where the quality factor is defined as:

$$Q \equiv \frac{1}{R} \sqrt{\frac{L}{C}}$$

RLC series circuit: Impedance (1)

2nd order ODE:

$$V = V_R + V_L + V_C = RI + L\frac{dI}{dt} + \frac{1}{C}\int I.dt$$

$$\Rightarrow \frac{d^2I}{dt^2} + \frac{R}{L}\frac{dI}{dt} + \frac{1}{LC}I = \frac{1}{L}\frac{dV}{dt}$$

- Resonant frequency still $\omega_0 = \frac{1}{\sqrt{LC}}$
- Let's define the parameter $\zeta = \frac{R}{2L}$

$$\frac{d^2I}{dt^2} + 2\zeta \frac{dI}{dt} + \omega_0^2 I = \frac{1}{L} \frac{dV}{dt}$$

RLC series circuit: Impedance (2)

 Take back (but could also jut compute the impedance of the system)

$$\frac{d^2I}{dt^2} + 2\zeta \frac{dI}{dt} + \omega_0^2 I = \frac{1}{L} \frac{dV}{dt}$$

Explicit / in its complex form and deduce the current:

$$-\omega^{2}I + 2i\zeta\omega I + \omega_{0}^{2}I = i\frac{1}{L}\omega V$$

$$\Rightarrow Y \equiv \frac{I}{V} = \frac{i\omega}{\omega_{0}^{2} - \omega^{2} + 2i\zeta\omega} \Rightarrow |Y| = \frac{1}{\sqrt{R^{2} + \left(L\omega - \frac{1}{C\omega}\right)^{2}}}$$

• Introducing $x = \omega/\omega_0$ we have

$$|Y| = \frac{1}{R\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}}$$

P. Piot, PHYS 375 – Spring 2008

RLC series circuit: resonance

P. Piot, PHYS 375 - Spring 2008

RLC parallel circuit: resonance

- The same formalism as before can be applied to parallel RLC circuits.
- The difference with serial circuit is: at resonance the impedance has a maximum (and not the admittance as in a serial circuit)