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Lesson 3: RLC circuits & resonance

• Inductor, Inductance
• Comparison of Inductance and Capacitance
• Inductance in an AC signals
• RL circuits
• LC circuits: the electric “pendulum”
• RLC series & parallel circuits
• Resonance



P. Piot, PHYS 375 – Spring 2008

• Start with Maxwell’s equation

• Integrate over a surface S (bounded by contour C) and 
use Stoke’s theorem:

• The voltage is thus
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• Now need to find a relation between magnetic field 
generated by a loop and current flowing through the 
loop’s wire. Used Biot and Savart’s law:

• Integrate over a surface S the magnetic flux is going to 
be of the form

• The voltage is thus
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• Case of loop made with an infinitely thin wire

• If the inductor is composed of n loop per meter then 
total B-field is

• So inductance is
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Inductor in an AC Circuit
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• Introduce reactance for an inductor:
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• Resistance = friction against motion of electrons

• Reactance = inertia that opposes motion of electrons

• Impedance is a generally complex number:

• Note also one introduces the Admittance:

Inductor , Capacitor, Resistor
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RL series Circuits
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• For the above circuit we can compute a numerical 
value for the impedance:
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RL parallel Circuits
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• For the above circuit we can compute a numerical 
value for the impedance:



P. Piot, PHYS 375 – Spring 2008

Inductor: Technical aspects

• Inductors are made a conductor wired 
around  air or a ferromagnetic core

• Unit of inductance is Henri, symbol is H

• Real inductors also have a resistance (in 
series with inductance)
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RLC series/parallel Circuits
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• Compute impedance of the circuit below
– Step 1:  consider C2 in series with L Z1
– Step 2: consider Z1 in parallel with R Z2
– Step 3: consider Z2 in series with C

• Let’s do this:

• Current in the circuit is

• And then one can get the voltage across any components

RLC series/parallel Circuits: an example
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LC circuit: An electrical pendulum
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LC circuit: An electrical pendulum
• Mechanical pendulum: oscillation between

potential and kinetic energy

• Electrical pendulum: oscillation between 
magnetic (1/2LI2) and electrostatic 
(1/2CV2)
energy

• In practice, the LC circuit showed has 
some resistance, i.e. some energy is 
dissipated and therefore the oscillation 
amplitude is damped. The oscillation 
frequency keeps unchanged.

• LC circuit are sometime called tank circuit 
and oscillate (=resonate)
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Example of a simple “tank” (LC) circuit

• ODE governing this circuit?

• Equation of a simple harmonic oscillator with pulsation: 

• Or one can state that system oscillate if impedance associated to C and L 
are equal, i.e.:
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Example of a simple “tank” (LC) circuit

• What is the total impedance of the circuits?

• So the tank circuit behaves as an open circuit at resonance!

• In a very similar way one can show that a series LC circuit behaves as a 
short circuit when driven on resonance i.e.,
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RLC series circuit
• 2nd order ODE:

• Resonant frequency still

• Let’s define the parameter

• Then the ODE rewrites 
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RLC series circuit: regimes of operation (1)

• Let’s consider V(t) to be a dirac-like impulsion (not physical…) at t=0. 
Then for t>0, V(t)=0 and the previous equation simplifies to 

• With solutions

• Where the λ are solutions of the characteristics polynomial is 

• The discriminant is

• And the solutions are 
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RLC series circuit: regimes of operation (2)

• If ∆<0 that is if 
Under damped

U(t) is of the form

A and B are found from initial conditions. 

• If ∆=0 critical damping
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RLC series circuit: regimes of operation (3)

• If ∆>0 that is if 
Strong damping

U(t) is of the form

A and B are found from initial conditions. 

Which can be rewritten
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Over-damped Critical damping

Under-damped

RLC series circuit: regimes of operation (4)

• For under-damped regime, the 
solutions are exponentially 
decaying sinusoidal signals. 
The time requires for these 
oscillation to die out is 1/Q 
where the quality factor is 
defined as:
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RLC series circuit: Impedance (1)
• 2nd order ODE:

• Resonant frequency still

• Let’s define the parameter

• Then the ODE rewrites 
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• Take back (but could also jut compute the impedance of the 
system)

• Explicit I in its complex form and deduce the current:

• Introducing x=ω/ω0 we have

RLC series circuit: Impedance (2)
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RLC series circuit: resonance

Values of Q
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• The same formalism as before can be applied to parallel 
RLC circuits. 

• The difference with serial circuit is: at resonance the 
impedance has a maximum (and not the admittance as in 
a serial circuit)

RLC parallel circuit : resonance


