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Alternating & Direct Currents

– AC versus DC signals
– AC characterization
– Mathematical tools:

• Complex number
• Complex representation of an AC signal

– Resistor in an AC circuit
– Capacitors
– Reactance and Impedance
– RC circuits
– High and low-pass filters
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Alternating Current (AC) versus Direct Current (DC)

• With AC it is possible to build electric generators, 
motors and power distribution systems that are far 
more effcient than DC.

• AC is used predominately across the world of high 
power
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Alternating Current (AC): waveforms
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• Can an AC waveform be characterized by a 
few parameters?

• Peak-to-peak (PP)

• Peak

• Average

• Practical Average

• Root-mean-square

Alternating Current (AC): characterization
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Alternating Current (AC): characterization
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• For some analytical waveform, 
there exits relation between the 
different parameters

• Take a sinusoidal waveform 
with amplitude 1 then
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Alternating Current (AC): characterization

• It matters what waveform is considered

• For instance for the same peak value, a square waveform 
will result in higher power than a triangular waveform.
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• In the following we will consider sinusoidal-type 
waveform (in principle any waveform can be 
synthesized as a series of sine wave (Fourier)

• We will write (in real notation)

• It often better to use complex notation:

• And will often do calculation in complex notation and at the end recall 
that our physical signal is the real part of the complex results

• We can associate a vector in the complex plane to this complex 
number

Alternating Current (AC): mathematical tools
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Resistor in an AC circuit
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• R is a real number. So in the complex 
plane, all quantities are along real axis

• Current and Voltage are said to be in 
phase

• When instantaneous value of current is 
zero 
corresponding instantaneous value of 
voltage is zero 

• Note power > 0 at all time resistor 
always dissipates energy
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Capacitors: voltage versus current relation
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• Current induced by electric displacement:.

• Assume a simple model of two plate 
separated by a small distance. Gauss’s 
law gives:
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Capacitors: technical aspects

M. Faraday (1791-1867)

• Unit for Capacitance is Farad (in 
honor to Faraday)

• Capacitor symbol:

•

• Real world capacitors 
also introduce a resistance 
(we will ignore this effect)
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Capacitor

• A capacitor either acts as a load or as a source

• A capacitor can therefore store energy.
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Capacitor in an AC circuits
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VC• Capacitors do not behave the same as 
resistors

• Resistors allow a flow of e- proportional to 
the voltage drop

• Capacitors oppose change by drawing or 
supplying current as they charge or 
discharge.
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• The general linear relation between V and I is of the form

Z is called impedance. 

• For a resistor Z=R is a real number.

• For a capacitor                    is an imaginary number

• Generally Z will be a complex number (if V and I are written in their 
complex forms)

• For instance if a circuit has both capacitor(s) and resistor(s) we expect 
Z to generally be a complex number

• For a capacitor the quantity                       is called reactance and is in 
Ohm (Ω)

Reactance and Impedance
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Z

VT

Example: Impedance of a series RC Circuits
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• Let’s compute the total impedance of the RC circuit:

• The impedance can be written as:

• NA: Z=5-26.52i or |Z|=29.99 and Ξ=-79.325 degree
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XC

IR

Example: Impedance of a parallel RC Circuits
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• Let’s compute the total impedance of the RC circuit:

• NA: Z=4.83-0.91i or |Z|=4.91 and Ξ=-10.68 degree
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General Analysis of an RC series circuits
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Solving the differential equation for the RC series circuit

• Previous equation is of the form:

• First find the solution for the homogeneous equation

• Then find a particular solution of the inhomogeneous 
equation

• The general solution is of 
the form

• So finally we have
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General Analysis of an RC series circuits
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• Applying previous results to RC series circuits gives:

• Or in real notations:
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General Analysis of an RC series circuits

I/(
V/

R)
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RC series circuits as frequency filters: low pass
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• The gain A is defined as:
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RC series circuits as frequency filters: low pass
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• Signal with frequencies below
1/RC are unaltered, 

• Signal with frequency above
1/RC are attenuated
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RC series circuits as frequency filters: high pass
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RC series circuits as frequency filters: high pass
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• Signal with frequencies above
1/RC are unaltered, 

• Signal with frequency below
1/RC are attenuated


