Alternating & Direct Currents

- AC versus DC signals
- AC characterization
- Mathematical tools:
 - Complex number
 - Complex representation of an AC signal
- Resistor in an AC circuit
- Capacitors
- Reactance and Impedance
- RC circuits
- High and low-pass filters

Alternating Current (AC) versus Direct Current (DC)

- With AC it is possible to build electric generators, motors and power distribution systems that are far more effcient than DC.
- AC is used predominately across the world of high power

Alternating Current (AC): waveforms

AC signal are periodic:

$$S(t+T) = S(t)$$

period

Square wave

frequency

$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$

Triangle wave

UNITS:

pulsation

f. in Hertz (Hz)

 ω : in rad.s⁻¹

Heinrich Rudolf Hertz (1857-1894)

Alternating Current (AC): characterization

 Can an AC waveform be characterized by few parameters?

- Peak-to-peak (PP) $PP = \max(S) \min(S)$
- Peak $P = \max(S)$
- Average $\langle S \rangle = \frac{1}{T} \int_{t}^{t+1} S(t) dt$
- Practical Average

$$AVG = \frac{1}{T} \int_{t}^{t+T} |S(t)| dt$$

Root-mean-square

True average value of all points (considering their signs) is **zero!**

P. Piot, PHYS 375 - Spring 2008

where
$$\langle S^n \rangle = \frac{1}{T} \int_{t}^{t+T} S^n(t) dt$$

Alternating Current (AC): characterization

- For some analytical waveform, there exits relation between the different parameters
- Take a sinusoidal waveform with amplitude 1 then

$$(RMS)^{2} = \frac{1}{T} \int_{t}^{t+T} \sin^{2}(\omega t) dt = \frac{1}{T} \int_{0}^{2\pi} \frac{1}{\omega} \sin^{2}(\theta) d\theta$$
$$\Rightarrow (RMS) = \frac{\sqrt{2}}{2}$$

$$(AVG) = \frac{1}{T} \int_{t}^{t+T} \sin(\omega t) | dt = \frac{1}{T} \int_{0}^{2\pi} \frac{1}{\omega} |\sin(\vartheta)| d\vartheta$$
$$= 2\frac{1}{2\pi} \int_{0}^{\pi} \sin(\vartheta) d\vartheta = \frac{2}{\pi}$$

P-P = 2 (Peak)

Alternating Current (AC): characterization

- It matters what waveform is considered
- For instance for the same peak value, a square waveform will result in higher power than a triangular waveform.

Alternating Current (AC): mathematical tools

 In the following we will consider sinusoidal-type waveform (in principle any waveform can be synthesized as a series of sine wave (Fourier)

We will write (in real notation)

$$S(t) = S_0 \cos(\omega t + \phi)$$

It often better to use complex notation:

$$S(t) = \Re[S_0 e^{i(\omega t + \phi)}]$$

- And will often do calculation in complex notation and at the end recall that our physical signal is the real part of the complex results
- We can associate a vector in the complex plane to this complex number

Resistor in an AC circuit

$$V_R = RI_R$$

- R is a real number. So in the complex plane, all quantities are along real axis
- Current and Voltage are said to be in phase
- When instantaneous value of current is zero corresponding instantaneous value of voltage is zero
- Note power > 0 at all time ⇒ resistor always dissipates energy

Capacitors: voltage versus current relation

Current induced by electric displacement:.

$$\vec{J} = \frac{\partial \vec{D}}{\partial t} = \varepsilon \frac{\partial \vec{E}}{\partial t} + \frac{\partial \vec{P}}{\partial t}$$

Charge

Plate area

Electric

field E

A

Plate separation d

$$\oint \vec{E} \cdot \vec{dS} = \frac{Q}{\varepsilon_0} \Rightarrow E = \frac{Q}{\varepsilon_0 A}$$

$$QL \qquad QL$$

 $\Rightarrow V = \frac{QL}{\varepsilon_0 A} \equiv \frac{Q}{C}$

capacitance

$$\vec{J} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \Rightarrow \frac{\partial V}{\partial t} = \frac{Jd}{\varepsilon_0} = \frac{Id}{A\varepsilon_0} = \frac{1}{C}I \Leftrightarrow \vec{I} = C\frac{\partial V}{\partial t}$$

P. Piot, PHYS 375 - Spring 2008

Capacitors: technical aspects

- Unit for Capacitance is Farad (in honor to Faraday)
- Capacitor symbol:
- Capacitor symbols

 Real world capacitors also introduce a resistance (we will ignore this effect)

Capacitor equivalent circuit

M. Faraday (1791-1867)

Capacitor

A capacitor either acts as a load or as a source

A capacitor can therefore store energy.

Capacitor in an AC circuits

$$I_C = C \frac{dV_C}{dt} = i\omega CV_C$$

- Capacitors do not behave the same as resistors
- Resistors allow a flow of e- proportional to the voltage drop
- Capacitors oppose change by drawing or supplying current as they charge or discharge.

Reactance and Impedance

The general linear relation between V and I is of the form

$$Z \equiv V/I$$

Z is called **impedance**.

- For a resistor Z=R is a real number.
- For a capacitor $Z = \frac{-i}{\omega C}$ is an **imaginary number**
- Generally Z will be a complex number (if V and I are written in their complex forms)
- For instance if a circuit has both capacitor(s) and resistor(s) we expect
 Z to generally be a complex number
- For a capacitor the quantity $X_C = \frac{-1}{\omega C}$ is called reactance and is in Ohm (Ω)

Example: Impedance of a series RC Circuits

Let's compute the total impedance of the RC circuit:

$$V_{T} = V_{C} + V_{R} = \frac{-i}{\omega C}I + RI = (R - \frac{i}{\omega C})I$$

$$\Rightarrow Z = R - \frac{i}{\omega C} = R + iX_{C}$$

The impedance can be written as:

$$Z = \sqrt{R^2 + \frac{1}{\omega^2 C^2}} e^{i\Xi}$$
, with $\tan \Xi = -\frac{1}{\omega RC}$

NA: Z=5-26.52i or |Z|=29.99 and Ξ=-79.325 degree

Example: Impedance of a parallel RC Circuits

Let's compute the total impedance of the RC circuit:

$$I = I_C + I_R = \left(i\omega C + \frac{1}{R}\right)V$$

$$\Rightarrow Z = \left(i\omega C + \frac{1}{R}\right)^{-1} = \frac{1}{\frac{1}{X_C} + \frac{1}{R}}$$

• NA: Z=4.83-0.91i or |Z|=4.91 and $\Xi=-10.68$ degree

General Analysis of an RC series circuits

Let's write the ODE for the current

$$V = V_R + V_C = RI + \int \frac{I}{C} dt$$

$$\Leftrightarrow \frac{dI}{dt} + \frac{1}{RC}I = \frac{1}{R} \frac{dV}{dt}$$

How do we solve?

Solving the differential equation for the RC series circuit

Previous equation is of the form:

$$y'(t) + \alpha y(t) = f(t), \quad y(0) = y_0$$

- First find the solution for the homogeneous equation $y_h = D e^{-\alpha t}$
- Then find a particular solution of the inhomogeneous equation $y_p(t) = g(t) e^{-\alpha t}$

$$\begin{split} f(t) &= (g(t)\,e^{-\alpha\,t})' + \alpha g(t)\,e^{-\alpha\,t}, \Rightarrow f(t) = g'(t)\,e^{-\alpha\,t} \\ g(t) &= \int_0^t f(s)e^{\alpha\,s}\,ds \end{split}$$

- The general solution is of the form $y_g = y_h + y_p = e^{-\alpha t} \left(D + \int_0^t f(s) e^{\alpha s} \, ds \right)$

So finally we have
$$y(t) = e^{-\alpha t} \left(y_0 + \int_0^t f(s) e^{\alpha s} \, ds \right)$$

General Analysis of an RC series circuits

Applying previous results to RC series circuits gives:

$$I(t) = \frac{V_0}{R} e^{-\frac{t}{RC}} \left(1 + \frac{\omega^2 + \frac{i\omega}{RC}}{\omega^2 + \frac{1}{R^2C^2}} \left(e^{i\omega t + \frac{t}{RC}} - 1 \right) \right)$$

Or in real notations:

$$I(t) = \frac{V_0}{R} \left(1 - \frac{\omega^2}{\omega^2 + \frac{1}{R^2 C^2}} \right) e^{-\frac{t}{RC}} + \frac{V_0}{R} \frac{\omega^2}{\omega^2 + \frac{1}{R^2 C^2}} \cos \omega t - \frac{V_0}{R^2 C} \frac{\omega}{\omega^2 + \frac{1}{R^2 C^2}} \sin \omega t$$

General Analysis of an RC series circuits

P. Piot, PHYS 375 - Spring 2008

RC series circuits as frequency filters: low pass

The voltage across capacitor is

$$V_c = -\frac{i}{\omega C}I = -\frac{i}{\omega C}\frac{V}{Z}$$

$$\Rightarrow V_c = \frac{1 - iRC\omega}{1 + R^2C^2\omega^2}V$$

• The gain A is defined as: $A = |A| e^{i\Theta}$

$$A = \frac{V_C}{V} = \frac{1 - iRC\omega}{1 + R^2 C^2 \omega^2}$$

$$\Rightarrow |A| = \frac{1}{\sqrt{1 + R^2 C^2 \omega^2}}; \Theta = \arctan(-RC\omega)$$

Note the limits

$$\lim_{\omega > 1/RC} |A| = 0; \lim_{\omega < 1/RC} |A| = 1$$

$$\lim_{\omega > 1/RC} \Theta = -90; \lim_{\omega < 1/RC} \Theta = 0$$

RC series circuits as frequency filters: low pass

- Signal with frequencies below 1/RC are unaltered,
- Signal with frequency above
 1/RC are attenuated

RC series circuits as frequency filters: high pass

The voltage across capacitor is

$$V_{R} = RI = R\frac{V}{Z}$$

$$\Rightarrow V_{c} = R\frac{1}{R - \frac{i}{C\omega}}V$$

The gain A is defined as: $A = |A| e^{i\Theta}$

$$A = \frac{V_C}{V} = \frac{R^2 C^2 \omega^2 + iRC\omega}{1 + R^2 C^2 \omega^2}$$

$$\Rightarrow |A| = \frac{RC\omega}{\sqrt{1 + R^2 C^2 \omega^2}}; \Theta = \arctan\left(\frac{1}{RC\omega}\right)$$

$$\lim_{\omega > 1/RC} |A| = 1; \lim_{\omega < 1/RC} |A| = R$$

$$\lim_{\omega > 1/RC} |\Delta| = 0; \lim_{\omega < 1/RC} |\Delta| = 90$$

Note the limits

$$\lim_{\omega > 1/RC} |A| = 1; \lim_{\omega < 1/RC} |A| = RC\omega$$

$$\lim_{\omega > 1/RC} \Theta = 0; \lim_{\omega < 1/RC} \Theta = 90$$

RC series circuits as frequency filters: high pass

