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Alternating Current (AC) versus Direct Current (DC)

DIRECT CURRENT ALTERNATING CURRENT
(DC) (AC)
e e | - | -

[ — - | —

With AC it is possible to build electric generators,

motors and power distribution systems that are far
more effcient than DC.

AC is used predominately across the world of high
power
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Alternating Current (AC): waveforms

AC signal are periodic:

1l w
St+T)=5() f=o=2
T 2z
/ - UNITS:
uare wave riangle wave i
’ ’ f in Hertz (Hz)
‘ . in rad.s’
l+=— one wave cycle — l+— one wave cycle —]
(the sine wave) Sawtooth wave
Ul Heinrich Rudolf Hertz

| | (1857-1894)
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Alternating Current (AC): characterization

« Can an AC waveform be characterized by

few parameters?
Peak-to-Peak

y
« Peak-to-peak (PP) PP =max(s$)—min(S) Time —»
« Peak P =max(S) Piak

t+T

* Average <S>:%jS(1)dt

* Practical Average

t+T

1
AVG = NG

T Practical average of points, all
True average value of all points —values assumed to be positive.

° ROOt- mea nt_ Sq uare (considering their signs) is zero!

2 - | T 2 1/2 where -
RMSE\/<S >—<S> {T !S (t)df} <Sn>:% [ 5"t
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Alternating Current (AC): characterization

» For some analytical waveform,

there exits relation between the /\

different parameters 7
« Take a sinusoidal waveform \/

with amplitude 1 then

1t+T 127r1

RMS)? == |sin’*(wt)dt = — | —sin” ($)d 9 ‘

(RMS) T{ (@r) le *(9) ‘
:(RMS):g

t+T
|

1 71
AVG)=— ||sin(wt) | dt =— | — | sin(P) | d-F
( )T{|<>| le")'

o b j sin(9)d 9 =2
0 T

27
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RMS = 0.707 (Peak)
AVG = 0.637 (Peak)
P-P = 2 (Peak)

RMS = Peak
AV = Peak
P-P = 2 (Peak)

RMS = 0.577 (Peak)
AVG = 0.5 (Peak)
P-P = 2 (Peak)

RMS = 277
AVG = 2727
P-P = 2 (Peak)



Alternating Current (AC): characterization

* |t matters what waveform is considered

* Forinstance for the same peak value, a square waveform
will result in higher power than a triangular waveform.

T L ;’Jr“\\
1[} V ’J'f \\
_+_ N ;

b r
™ r
] ’,
b F
bt )

] r
b r
b T 4

(same load resistance)

27,0 3

(peak) (peak)

more heat energy less heat energy
dissipated dissipated

Time
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Alternating Current (AC): mathematical tools

In the following we will consider sinusoidal-type
waveform (in principle any waveform can be g
synthesized as a series of sine wave (Fourier) g
= Vv
We will write (in real notation) ¢
Real

S(t)=S§, cos(wt + @)

It often better to use complex notation:
_ i(ot+¢)
S(t) = R[S,e ]

And will often do calculation in complex notation and at the end recall
that our physical signal is the real part of the complex results

We can associate a vector in the complex plane to this complex
number
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Resistor in an AC circuit

VT [ —

S
<
Py
—f—
YW
=
Imaginary

V. =RI,

R is a real number. So in the complex
plane, all quantities are along real axis

Current and Voltage are said to be in +
phase

When instantaneous value of current is
zero

corresponding instantaneous value of
voltage is zero

Note power > 0 at all time = resistor
always dissipates energy
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Capacitors: voltage versus current relation

» Current induced by electric displacement..

J=2=_
ot
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« Assume a simple model of two plate

separated by a small distance. Gauss'’s
law gives:

{J«fﬁ =g —> F :g

&, £,A4

=V :g Eg

g4 C
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Capacitors: technical aspects

Unit for Capacitance is Farad (in

honor to Faraday)

Capacitor symbol:

Capacitor symbaols

v

cbsolate

mcdarn

Real world capacitors
also introduce a resistance
(we will ignore this effect)

=i

0 1

Capacitor equivalent circuit
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Capacitor

A capacitor either acts as a load or as a source

Energy being absorbed by
the capacitor from the rest
of the circuit.

-+ |
. to the rest of C ==+ increasing
the circuit = voltage
| —

The capacitor acts as a LOAD

A capacitor can therefore store energy.

Energy being released by the
capacitor to the rest of the circuit

| —=

. o the rest of

the circuit

C =

%=

—— I

decreasing
voltage

The capacitor acts as a SOURCE
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Capacitor in an AC circuits

Imaginary

v,

. =C
¢ dt

=iawCV,

« Capacitors do not behave the same as
resistors

* Resistors allow a flow of e- proportional to
the voltage drop

« Capacitors oppose change by drawing or
supplying current as they charge or
discharge.
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Reactance and Impedance

« The general linear relation between V and | is of the form
Z=V/I

Z is called impedance.

e For aresistor Z=R is a real number.

« For a capacitor Z :—é IS an imaginary number
)

* Generally Z will be a complex number (if V and / are written in their
complex forms)

» Forinstance if a circuit has both capacitor(s) and resistor(s) we expect
Z to generally be a complex number

« For a capacitor the quantity X.=—— is called reactance and is in
Ohm (Q) oC
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Example: Impedance of a series RC Circuits

» Let’'s compute the total impedance of the RC circuit:

—1 l
V.=V 4V, =——I+Rl=(R-———)I
T C R a)C ( Q)C)

—Z=R-——=R+iX,
wC

 The impedance can be written as:

| - 1
Zz\/Rer —e ,with tanE=—-——
w C wRC
 NA: Z=5-26.52i or |Z|=29.99 and =£=-79.325 degree
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Example: Impedance of a parallel RC Circuits

2o
&
|
|
~
{ >\
<)
e
S
| Ea
Do’
T
=
|
I~

Let’'s compute the total impedance of the RC circuit:

[=]+], = (ia)C + %}V

-1
:Z:(ia)CJrlj = :
R

11
7_'_7
X. R
NA: Z=4.83-0.91i or |Z|=4.91 and 5=-10.68 degree
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General Analysis of an RC series circuits

@’) \ {1 T V =V,coswt = ﬂ%(VOei“’t)

Let's write the ODE for the current
1
V=V,+V, :Rl+j—dt
C

a1 1av

& —+ [ =——
dt RC R dt

How do we solve?
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Solving the differential equation for the RC series circuit

Previous equation is of the form:
oy (8) L ay(t) = f(1), y(0)=uw

First find the splution for the homogeneous equation
yp = De

Then find a particular solution of the inhomogeneous
equat|0n ?).I’p{ f] — mf] (’3_”!

() = (g(t) e ") L ag(t) e !, = f(t) = g¢'(t) e
ALY LI\ L, ) g\, S, g\t

{
g(t) = / f(s)e"*ds
J0O

The general solution is of ¥
the form v, =un+ Uy, = e (D + / f(s)e"*ds)
Ay

i
So finally we have | y(t) = e " (y, + / f(s)e**ds)
4
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General Analysis of an RC series circuits

« Applying previous results to RC series circuits gives:

\
V L (02 t o~ ia)t+L
I()="Le R| 1+ RIC [e RC—1J
R o2 + -~
\ R°C J
 Orin real notations:
4
2 s 2
](;):& 1- @ eRC+V° @ COS Wt — Ig) @ sin wt
R 2 1 R 1 R°C > 1
) +chz ) +ch2 -+ R0
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General Analysis of an RC series circuits

f=200 Hz 1
0.8}
06+
0.4
0.2+

oL
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-1 -

1,100

V(V/R)

0 0.005 0.01 0.615 0.02
(R[<Y,C[uF]) Time (sec)
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RC series circuits as frequency filters: low pass

1 ‘,5{,\ .  The voltage across capacitor is
500 Q

I iV

3\ 1V (| = V =——— [ = ——

© I " wC wCZ
1-iRCw
0 ) — VC = 2,2 2
1+ R C w

+ ThegainAis definedas: 4 =| A|e”

 Note the limits

V. 1-iRCw
VvV 1+RC* . .
. Im |A|=0; Im |A[=1
:>| A |: ,@) — arctan(—RCa)) a)>>.1/RC a)<<1/.RC
V1+RC? e’ lim ®=-90; lim ©=0

w>>1/RC w<<1/RC
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RC series circuits as frequency filters: low pass

T NIRRT

PP W o EEL I o

i
1

10 10

wRC

L
0

10

~ Phase (rd)

« Signal with frequencies below
1/RC are unaltered,

« Signal with frequency above
1/RC are attenuated

wRC
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RC series circuits as frequency filters: high pass

B
1 “l 2 * The voltage across capacitor is
0.5 uF
v
IO RS 1 kO V,=Rl=R—
/
' G =V =R : —V
po b
© Co
 The gain Ais defined as: A =| A | e’
s o * Note the limits
A—VC R C'wo” +iRCw
Vo I+RCo lim |A]=1; lim |A4|=RCw
|A| RCw o t ( 1 w>>1/RC w<<1/RC
= = JW =arctan| —— . .
202, 2 Im ®=0; Im ® =90
JI+R*Co ko w>>1/ RC > w<<1/RC
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RC series circuits as frequency filters: high pass

10

Gain

15

T
107L 72'/4

wRC

80

=)

2,
Phase (rd)

o
()]

« Signal with frequencies above
1/RC are unaltered,

« Signal with frequency below
1/RC are attenuated

O.
10

1

wRC
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