Alternating \& Direct Currents

- AC versus DC signals
- AC characterization
- Mathematical tools:
- Complex number
- Complex representation of an AC signal
- Resistor in an AC circuit
- Capacitors
- Reactance and Impedance
- RC circuits
- High and low-pass filters

Alternating Current (AC) versus Direct Current (DC)

ALTERNATING CURRENT
(AC)

- With AC it is possible to build electric generators, motors and power distribution systems that are far more effcient than DC.
- AC is used predominately across the world of high power

Alternating Current (AC): waveforms

- AC signal are periodic:

frequency

$$
f=\frac{1}{T}=\frac{\omega}{2 \pi}
$$

pulsation

Heinrich Rudolf Hertz (1857-1894)

Alternating Current (AC): characterization

- Can an AC waveform be characterized by few parameters?
- Peak-to-peak (PP) $\boldsymbol{P P}=\max (\boldsymbol{S})-\min (\boldsymbol{S})$

- Peak $P=\max (S)$
- Average $\langle S\rangle=\frac{1}{T} \int_{t}^{t+T} S(t) d t$
- Practical Average

$$
A V G=\frac{1}{T} \int_{t}^{t+T}|S(t)| d t
$$

- Root-mean-square

$$
R M S \equiv \sqrt{\left\langle S^{2}\right\rangle-\langle S\rangle^{2}}=\left[\frac{1}{T} \int_{t}^{t+T} S^{2}(t) d t\right]^{1 / 2}
$$

True average value of all points (considering their signs) is zero!

Practical average of points, all values assumed to be positive.
where
$\left\langle S^{n}\right\rangle=\frac{1}{T} \int_{t}^{t+T} S^{n}(t) d t$
P. Piot, PHYS 375 - Spring 2008

Alternating Current (AC): characterization

- For some analytical waveform, there exits relation between the different parameters
- Take a sinusoidal waveform with amplitude 1 then

$$
\begin{aligned}
& (R M S)^{2}=\frac{1}{T} \int_{t}^{t+T} \sin ^{2}(\omega t) d t=\frac{1}{T} \int_{0}^{2 \pi} \frac{1}{\omega} \sin ^{2}(\vartheta) d \vartheta \\
& \Rightarrow(R M S)=\frac{\sqrt{2}}{2} \\
& \begin{array}{l}
(A V G)=\frac{1}{T} \int_{t}^{t+T}|\sin (\omega t)| d t=\frac{1}{T} \int_{0}^{2 \pi} \frac{1}{\omega}|\sin (\vartheta)| d \vartheta \\
\quad=2 \frac{1}{2 \pi} \int_{0}^{\pi} \sin (\vartheta) d \vartheta=\frac{2}{\pi}
\end{array}
\end{aligned}
$$

RMS $=0.577$ (Peak)
AVG $=0.5$ (Peak)
P-P $=2$ (Peak)

RMS = ???
AVG = ???
$P-P=2($ Peak $)$

Alternating Current (AC): characterization

- It matters what waveform is considered
- For instance for the same peak value, a square waveform will result in higher power than a triangular waveform.

Time
(same load resistance)

Alternating Current (AC): mathematical tools

- In the following we will consider sinusoidal-type waveform (in principle any waveform can be synthesized as a series of sine wave (Fourier)
- We will write (in real notation)

$$
S(t)=S_{0} \cos (\omega t+\phi)
$$

- It often better to use complex notation:

$$
S(t)=\mathfrak{R}\left[S_{0} e^{i(\omega t+\phi)}\right]
$$

- And will often do calculation in complex notation and at the end recall that our physical signal is the real part of the complex results
- We can associate a vector in the complex plane to this complex number

Resistor in an AC circuit

$$
V_{R}=R I_{R}
$$

- R is a real number. So in the complex plane, all quantities are along real axis
- Current and Voltage are said to be in phase
- When instantaneous value of current is zero
corresponding instantaneous value of voltage is zero

- Note power > 0 at all time \Rightarrow resistor always dissipates energy

Capacitors: voltage versus current relation

- Current induced by electric displacement:.
$\vec{J}=\frac{\partial \vec{D}}{\partial t}=\varepsilon \frac{\partial \vec{E}}{\partial t}+\frac{\partial \vec{P}}{\partial t}$

- Assume a simple model of two plate
 separated by a small distance. Gauss's law gives:

$$
\begin{gathered}
\oint \vec{E} \cdot \overrightarrow{d S}=\frac{Q}{\varepsilon_{0}} \Rightarrow E=\frac{Q}{\varepsilon_{0} A} \\
\Rightarrow V=\frac{Q L}{\varepsilon_{0} A} \equiv \frac{Q}{C}
\end{gathered}
$$

capacitance

$$
\vec{J}=\varepsilon_{0} \frac{\partial \vec{E}}{\partial t} \Rightarrow \frac{\partial V}{\partial t}=\frac{J d}{\varepsilon_{0}}=\frac{I d}{A \varepsilon_{0}}=\frac{1}{C} I \Leftrightarrow I=C \frac{\partial V}{\partial t}
$$

P. Piot, PHYS 375 - Spring 2008

Capacitors: technical aspects

- Unit for Capacitance is Farad (in honor to Faraday)
- Capacitor symbol:
- Capacitor symbols

- Real world capacitors also introduce a resistance (we will ignore this effect)

Capacitor equivalent circuit

M. Faraday (1791-1867)

Capacitor

- A capacitor either acts as a load or as a source

Energy being absorbed by the capacitor from the rest of the circuit.

The capacitor acts as a LOAD

Energy being released by the capacitor to the rest of the circuit

The capacitor acts as a SOURCE

- A capacitor can therefore store energy.

Capacitor in an AC circuits

$$
I_{C}=C \frac{d V_{C}}{d t}=i \omega C V_{C}
$$

- Capacitors do not behave the same as resistors
- Resistors allow a flow of e- proportional to the voltage drop
- Capacitors oppose change by drawing or supplying current as they charge or discharge.

Reactance and Impedance

- The general linear relation between V and I is of the form

$$
\boldsymbol{Z} \equiv V / I
$$

Z is called impedance.

- For a resistor $Z=R$ is a real number.
- For a capacitor $Z=\frac{-i}{\omega C}$ is an imaginary number
- Generally Z will be a complex number (if V and I are written in their complex forms)
- For instance if a circuit has both capacitor(s) and resistor(s) we expect Z to generally be a complex number
- For a capacitor the quantity $\quad X_{C}=\frac{-1}{\omega C}$ is called reactance and is in
Ohm (Ω)

Example: Impedance of a series RC Circuits

- Let's compute the total impedance of the RC circuit:

$$
\begin{aligned}
& V_{T}=V_{C}+V_{R}=\frac{-i}{\omega C} I+R I=\left(R-\frac{i}{\omega C}\right) I \\
& \Rightarrow Z=R-\frac{i}{\omega C}=R+i X_{C}
\end{aligned}
$$

- The impedance can be written as:

$$
Z=\sqrt{R^{2}+\frac{1}{\omega^{2} C^{2}}} e^{i \Xi}, \text { with } \tan \Xi=-\frac{1}{\omega R C}
$$

- NA: Z=5-26.52i or $|Z|=29.99$ and $\Xi=-79.325$ degree

Example: Impedance of a parallel RC Circuits

- Let's compute the total impedance of the RC circuit:

$$
\begin{aligned}
& I=I_{C}+I_{R}=\left(i \omega C+\frac{1}{R}\right) V \\
& \Rightarrow Z=\left(i \omega C+\frac{1}{R}\right)^{-1}=\frac{1}{\frac{1}{X_{C}}+\frac{1}{R}}
\end{aligned}
$$

- NA: $Z=4.83-0.91 i$ or $|Z|=4.91$ and $~ \Xi=-10.68$ degree

General Analysis of an RC series circuits

$$
V=V_{0} \cos \omega t=\mathfrak{R}\left(V_{0} e^{i \omega t}\right)
$$

- Let's write the ODE for the current

$$
\begin{aligned}
& V=V_{R}+V_{C}=R I+\int \frac{I}{C} d t \\
& \Leftrightarrow \frac{d I}{d t}+\frac{1}{R C} I=\frac{1}{R} \frac{d V}{d t}
\end{aligned}
$$

- How do we solve?

Solving the differential equation for the RC series circuit

- Previous equation is of the form:

$$
y^{\prime}(t)+\alpha y(t)=f(t), \quad y(0)=y_{0}
$$

- First find the solution for the homogeneous equation

$$
y_{h}=D e^{-\alpha t}
$$

- Then find a particular solution of the inhomogeneous equation $y_{p}(t)=g(t) e^{-\alpha t}$

$$
\begin{aligned}
& f(t)=\left(g(t) e^{-\alpha t}\right)^{\prime}+\alpha g(t) e^{-\alpha t}, \Rightarrow f(t)=g^{\prime}(t) e^{-\alpha t} \\
& g(t)=\int_{0}^{t} f(s) e^{\alpha s} d s
\end{aligned}
$$

- The general solution is of
the form $\quad y_{g}=y_{h}+y_{p}=e^{-\alpha t}\left(D+\int_{0}^{t} f(s) e^{\alpha s} d s\right)$
- So finally we have

$$
y(t)=e^{-\alpha t}\left(y_{0}+\int_{0}^{t} f(s) e^{\alpha s} d s\right)
$$

General Analysis of an RC series circuits

- Applying previous results to RC series circuits gives:

$$
I(t)=\frac{V_{0}}{R} e^{-\frac{t}{R C}}\left(1+\frac{\omega^{2}+\frac{i \omega}{R C}}{\omega^{2}+\frac{1}{R^{2} C^{2}}}\left(e^{i \omega t+\frac{t}{R C}}-1\right)\right)
$$

- Or in real notations:

$$
I(t)=\frac{V_{0}}{R}\left(1-\frac{\omega^{2}}{\omega^{2}+\frac{1}{R^{2} C^{2}}}\right) e^{-\frac{t}{R C}}+\frac{V_{0}}{R} \frac{\omega^{2}}{\omega^{2}+\frac{1}{R^{2} C^{2}}} \cos \omega t-\frac{V_{0}}{R^{2} C} \frac{\omega}{\omega^{2}+\frac{1}{R^{2} C^{2}}} \sin \omega t
$$

General Analysis of an RC series circuits

RC series circuits as frequency filters: low pass

- The voltage across capacitor is

$$
\begin{aligned}
& V_{c}=-\frac{i}{\omega C} I=-\frac{i}{\omega C} \frac{V}{Z} \\
& \Rightarrow V_{c}=\frac{1-i R C \omega}{1+R^{2} C^{2} \omega^{2}} V
\end{aligned}
$$

- The gain A is defined as: $A=|A| e^{i \Theta}$
- Note the limits

$$
\begin{aligned}
& A=\frac{V_{C}}{V}=\frac{1-i R C \omega}{1+R^{2} C^{2} \omega^{2}} \\
& \Rightarrow|A|=\frac{1}{\sqrt{1+R^{2} C^{2} \omega^{2}}} ; \Theta=\arctan (-R C \omega)
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{\omega \gg 1 / R C}|A|=0 ; \lim _{\omega<1 / R C}|A|=1 \\
& \lim _{\omega \gg 1 / R C} \Theta=-90 ; \lim _{\omega \ll 1 / R C} \Theta=0
\end{aligned}
$$

RC series circuits as frequency filters: low pass

RC series circuits as frequency filters: high pass

- The voltage across capacitor is

$$
\begin{aligned}
& V_{R}=R I=R \frac{V}{Z} \\
& \Rightarrow V_{c}=R \frac{1}{R-\frac{i}{C \omega}} V
\end{aligned}
$$

- The gain A is defined as: $A=|A| e^{i \Theta}$

$$
\begin{aligned}
& A=\frac{V_{C}}{V}=\frac{R^{2} C^{2} \omega^{2}+i R C \omega}{1+R^{2} C^{2} \omega^{2}} \\
& \Rightarrow|A|=\frac{R C \omega}{\sqrt{1+R^{2} C^{2} \omega^{2}}} ; \Theta=\arctan \left(\frac{1}{R C \omega}\right)
\end{aligned}
$$

- Note the limits

$$
\begin{aligned}
& \lim _{\omega \gg 1 / R C}|A|=1 ; \lim _{\omega<1 / R C}|A|=R C \omega \\
& \lim _{\omega \gg 1 / R C} \Theta=0 ; \lim _{\omega \ll 1 / R C} \Theta=90
\end{aligned}
$$

RC series circuits as frequency filters: high pass

