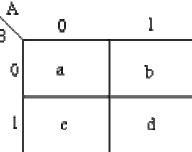
Logics gate & Boolean Algebra

Lecture:

- Logic gates and Boolean Algebra
- Common logical gates
 - OR, AND, XOR, ...
- Logic level
- Implementation
 - TTL
 - CMOS based

Lab:


Logic gates

Logic gate

- A gate is a circuit that operates on binary logics
- Can perform operation such as $A = \overline{A} = A + B = A \bullet B = A \oplus B$
- "Truth tables" are used to present the maping of input signal into ouput signal
- Karnaugh map are used to optimize a system (we will not use this)

A	В	F
0	0	2
0	L	Ъ
1	0	¢
1	l	d

Truth Table.

F.

Boolean Algebra

- Close to "classical" algebra
- Boolean Algebra allows:
 - Mathematical expression of logical function,
 - Manipulate variable to optimize an algorithm.
- Boolean "space"
 - 2 possible value: 0 or 1
 - 3 operations:
 - Addition (OR +)
 - Multiplication (AND × or •)
 - Inversion (/ or ⁻)
- Equations are typically sum of product or product of sum.

Boolean Algebra (CNT'D)

Boole's Theorems

- $x \cdot 0 = 0$
- $x \cdot 1 = X x$
- $\bullet \quad X \cdot X = X$
- $x \cdot /x = 0$
- x + 0 = x
- x + 1 = 1
- $\bullet \quad \mathbf{X} + \mathbf{X} = \mathbf{X}$
- x + /x = 1

Associativity

- x + (y + z) = (x + y) + z = x + y + z
- x. (y.z) = (x.y).z = x.y.z

Comutativity

- $\bullet \quad \mathbf{X} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
- $x \cdot y = y \cdot x$

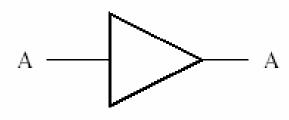
Distributivity

- x.(y + z) = x.y + x.z
- (w + x).(y + z) = w.y + w.z + x.y + x.z

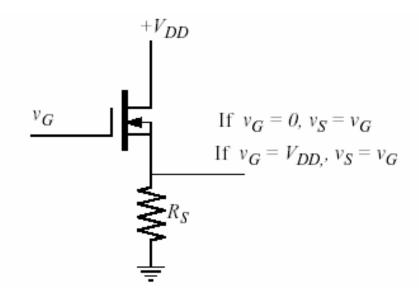
Other

- x + x.y = x
- x + /x.y = x + y

Boolean Algebra

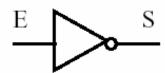

Morgan's theorems

$$(x + y) = x \cdot y$$
$$(x \cdot y) = x \cdot y$$
$$(x \cdot y) = x + y$$

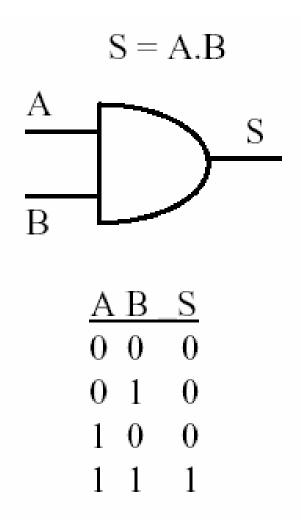

 Boolean Algebra allows to implement from a given set of logical gate any type of logical (=Boolean) equation

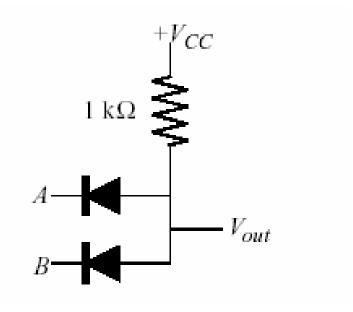
Identity and inverter gate

Identity (unitary gate)

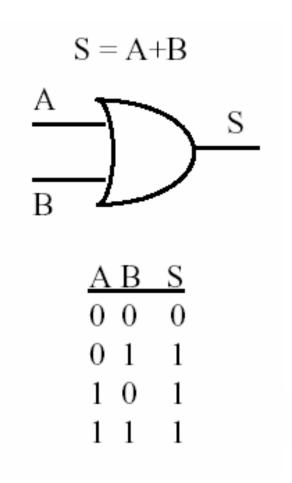


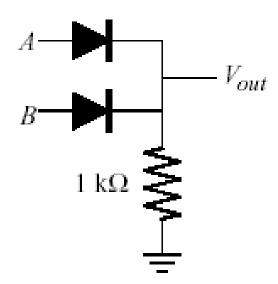
A_{in}	A_{out}
0	0
1	1



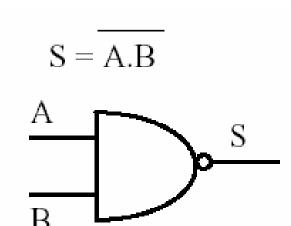

Inverser (N) gate

$$S = \overline{E}$$

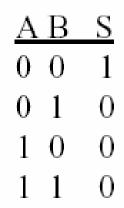

AND gate



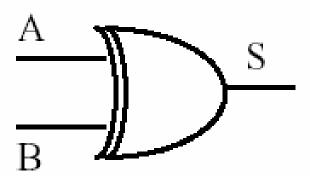
For V_{out} to be at $+V_{CC}$ both A and B must be within 0.6 V of $+V_{CC}$.


OR gate

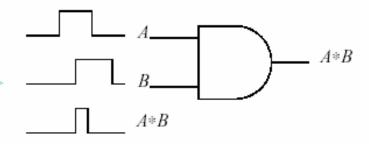
For V_{out} to not be 0 V either A or B must be over 0.6 V.


NAND and NOR gates

Α	В	S
0	0	1
0	1	1
1	0	1
1	1	0

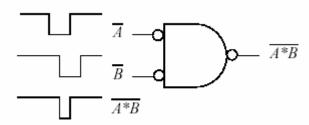

$$S = \overline{A + B}$$

$$A \qquad S$$

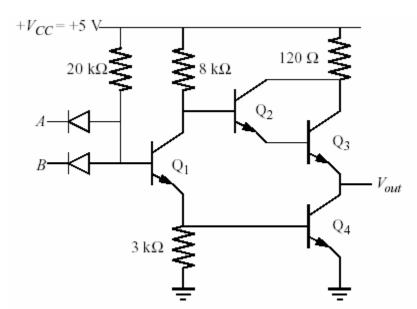

XOR gate

$$S = A.B + A.B$$

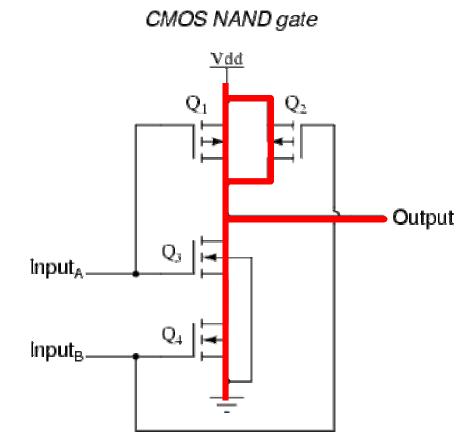
 $S = A \oplus B$


Logic Level

- -Boolean logic
 - True (T) or False (F)
 - 1 (\equiv True) or 0 (\equiv True)
- Electronics level
 - -High (H) Low (L)
 - $-1 (\equiv High) \text{ or } 0 (\equiv True)$
- -Positive logic convention:
 - -High = TRUE


-Negative logic convention:

$$-High = FLASE$$


Transistor-Transistor Logic (TTL) example of NAND function

- The diodes and 20 $k\Omega$ resistor make a simple AND-gate.
- The transistor at Q1 forms an inverter to the base of Q2 and Q4.
- The transistors Q2, Q3, and Q4 form a push-pull amplifier.
- If A and B are HIGH, the base of Q1 is at 5 V, and Q1 is on. That puts the bases of Q2 and Q4 at about 1.4 V (5V*3Ω/11Ω) turning both on. Vout is then pulled to ground plus a C-E drop of 0.1 to 0.2 V.
- If A or B is LOW, the base of Q1 is at 0.6 V and is off. This holds the base of Q2 at 5 V and Q4 at ground. Q3 is on and Vout is at 4.4 V. due to a diode drop across the Darlington Q2Q3.

Complementary Meta Oxide Semiconductor (CMOS)-based NAND

- The CMOS MOSFETs are connected as switches.
- A and B HIGH turn on Q3 and Q4 while turning off Q1 and Q2.
- A and B LOW turn on Q1 and Q2 while turning off Q3 and Q4.
- If both Q3 and Q4 are on then *Vout* is at ground, otherwise either Q1 or Q2 will be on pulling *Vout* up to *VDD*.

Comparison TTL vs CMOS

- Power Supply
 - TTL supply is restricted to 4.75 V to 5.25 V.
 - CMOS supply can be 2 V to 6 V for HC and AC, 3 V to 15 V for 4000B, but 5 V for HCT and ACT.
- Output Signal
 - TTL
 - Low L if signal between 0 and 0.8 V
 - High H if signal between 2 and 5 V
 - CMOS
 - Low L if signal is 0 V
 - High is at VDD through a few hundred ohms of the MOSFET
- Speed
 - TTL speeds range from 25 MHz for LS to 100 MHz for F and AS.
 - CMOS speeds range from 2 MHz for 4000B to 100 MHz for AC.

Comparison TTL vs CMOS (CNT'D)

- CMOS can be damaged by static electricity
- TTL more sensitive to noise
- CMOS consume more power (this impose some design constraint) even with low voltage operation.