Electronics Switches \& Controls

- Conventional controls
- Potentiometer
- switches
- Transistor as switches and controls
- FET-based
- BJT-based

Variable potentiometers

-Variable resistance sometime needed (see Labs)

- potentiometer provides such a variable resistance.
-Make sure the circuit works for any transitor from this batch.

$$
V_{\mathrm{L}}=\frac{R_{2} R_{\mathrm{L}}}{R_{1} R_{\mathrm{L}}+R_{2} R_{\mathrm{L}}+R_{1} R_{2}} \cdot V_{s}
$$

Electronics Switches

-Switches are elements with two states «Open » and «Close»

SPST : Single Pole Single Throw

SPDT : Single Pole Double Throw

DPST : Double Pole Double Throw
-Simplest switches are mechanical switches

Refresher on transistors

-Transistors can be used as switches, to control resistance, etc...

■BJT

$$
\rightarrow I_{E}=I_{B}+I_{C}
$$

NPN

PNP
-FET

JFET P-channel

$$
\rightarrow I_{G}=I_{S}+I_{D}
$$

Operating mode a a NPN BJT

$V_{C C}=$ external voltage source supplytin C et $E . V_{C E}$ cannot be larger than Vcc!
P. Piot, PHYS 375 - Spring 2008

Operating mode a a NPN BJT

BJT as a switch

$t<0: V_{B E}<0.7 V \rightarrow$ Open mode $+V_{C C}$
R_{B}
"Open

$$
\begin{aligned}
& \text { switch" } \\
& I_{R_{C}}=0
\end{aligned}
$$

$$
I_{R_{C}}=\frac{V_{C C}-0.2}{R_{C}} \cong \frac{V_{C C}}{R_{C}}
$$

BJT as a switch

$$
I_{B_{\text {min }}}^{\substack{\text { nclosed surich })}} \cong \frac{V_{c c}}{R_{c} \beta} \cong \frac{V_{B E_{\min }}-0.8}{R_{B}}
$$

P. Piot, PHYS 375 - Spring 2008

BJT as a switch: turning on/off a light

-BJT with 5 V voltage source,

- Design a system to switch a $20 \mathrm{~mA}, 5 \mathrm{~V}$ lamp on and off,
- The gain factor for a given batch of transitor varies between $100<\beta<500$,
-Make sure the circuit works for any
 transitor from this batch.

$$
\begin{aligned}
& i_{B}=\frac{1}{\beta} i_{c} \Rightarrow \max \left(i_{B}\right)=\frac{1}{\min (\beta)} i_{c} \Rightarrow \max \left(i_{B}\right)=0.2 \mathrm{~mA} \\
& V_{I N}=V_{B E}+R_{B} i_{B} \Rightarrow R_{B}=\frac{V_{I N}-V_{B E}}{i_{B}}=\frac{5-0.6}{0.2} 10^{3}=22 \mathrm{k} \Omega
\end{aligned}
$$

BJT as an amplifier

assumptions :
Transistor operates in active mode when $\boldsymbol{v}_{\boldsymbol{B}}=\mathbf{0}$

- Amplitude of v_{B} signal small enough to have active mode operation
- In $1^{\text {st }}$ approximation :

$$
V_{B} \equiv V_{B B}+v_{b}
$$

$$
\rightarrow I_{E} \approx \frac{V_{B}-V_{B E}}{R_{E}} \approx I_{C}=\bar{I}_{C}+i_{c} \quad\left(I_{B} \ll I_{C}\right)
$$

Neglecting variation of $V_{B E}: \quad \rightarrow i_{c} \approx \frac{v_{B}}{R_{E}}$

Finally: $\quad V_{o u t}=V_{c c}-R_{c} I_{C}=V_{S}+v_{s} \quad$ with $: V_{S}=V_{c c}-R \cdot \bar{I}_{C}$
and

$$
v_{S}=-R_{c} i_{c}=-\frac{R_{c}}{R_{E}} v_{b} \quad \text { Signal } v_{B} \text { is amplified by a factor } A_{v}=-\frac{R_{c}}{R_{E}}
$$

BJT as an amplifier: light detection

- Previous circuit can be used to amplify low intensity signal, e.g. such as produced in photodiode (typically $1 \mu \mathrm{~A} / 1 \mu \mathrm{~W}$ of incident light)
- Circuit is modified as follows:

Output voltage is given by:

$$
V_{\text {OUT }}=V_{C C}-R_{C} I_{C}
$$

From ground-E-B-ground loop:

$$
I_{C}=\frac{V_{B}-V_{B E}}{R_{E}} \approx \frac{R_{D} I_{D}-V_{B E}}{R_{E}} \approx \frac{R_{D} I_{D}-0.7}{R_{E}}
$$

Finally output voltage is:

$$
\begin{aligned}
V_{\text {OUT }} & =V_{C C}-\left(R_{D} I_{D}-0.7\right) \frac{R_{C}}{R_{E}} \\
& =V_{C C}+0.7 \frac{R_{C}}{R_{E}}-\frac{R_{D} R_{C}}{R_{E}} I_{D} \\
& =\bar{V}_{\text {OUT }}-\frac{R_{D} R_{C}}{R_{E}} I_{D}
\end{aligned}
$$

Two-states electronics

When $\mathrm{V}_{\text {in }}=0$ transistor is open, $\mathrm{V}_{\text {out }}=20 \mathrm{~V}$

\square As $\mathrm{V}_{\text {in }}$ increases the transistor turns on (active mode) and current begin to flow $\rightarrow \mathrm{V}_{\text {out }}$ is lowered toward ground.
\square Eventually $\mathrm{V}_{\mathrm{BE}} \sim 0.8 \mathrm{~V}$ (saturated mode), and when $\mathrm{V}_{\text {in }} \sim 1 \mathrm{~V}$
$\rightarrow \mathrm{I}_{\mathrm{c}}=\beta \mathrm{I}_{\mathrm{b}} \sim 20 \mathrm{~mA}$ so $\mathrm{V}_{\text {OUT }}$ is close to 0
\square This circuit has only two output states (with exception of $0.8 \mathrm{~V}<\mathrm{V}_{\text {in }}<1 \mathrm{~V}$)

Two-states electronics important components of digital electronics

FET as control

Pinch-off regime for $\quad V_{D S}>V_{D S_{\text {sat }}} \quad I_{D} \cong I_{D S S}\left(1-\frac{V_{G S}}{V_{G S_{\text {off }}}}\right)^{2}=k\left(V_{G S}-V_{G S_{\text {off }}}\right)^{2} k=\frac{I_{D S S}}{V_{G S_{\text {off }}}{ }^{2}}$
Linear (Ohmic) regime for $\quad V_{D S}<V_{D S_{s i t}} \quad I_{D} \cong 2 k\left[\left(V_{G S}-V_{\left.\left.G S_{\text {off }}\right)-\frac{V_{D S}}{2}\right] \cdot V_{D S}}\right.\right.$

FET as control

-When VGS \leq VGSoff, the channel is depleted \rightarrow transistor is blocked
-When VGSoff $<$ VGS <0, and VDS $>$ VGS+VP, (with $V P \sim \mid$ VGSoff \mid),
\rightarrow ID saturate and its value is quadractically dependent upon VGS.

- $V P$ is the value of VDS for which ID saturates and VGS is zero.
-The pich-off regime occurs for $\mathrm{VDS}=$ VGS+VP (VGS is non zero)
-For $0<$ VDS \ll VGS + VP, ID is proportional to VDS (linear regime) and
 the slope is smaller as VGS tends toward VGSoff.

FET as resistance control

For $V_{G S}>V_{G S o f f}$ and $V_{D S}<V_{G S}+V_{P}$:

$$
R_{D S} \cong \frac{1}{k \cdot\left[\left(V_{G S}+V_{P}\right)-\frac{V_{D S}}{2}\right]}
$$

example:

Choosing $R \gg R_{D S_{\text {on }}}, v_{\text {out }}$ varies between ~ 0 et $v_{\text {in }}$

Problem:
$R_{D S}$ depends on $V_{D S} \rightarrow$ nonlinear response

FET as resistance control: a better solution

$$
R_{D S} \cong \frac{1}{k \cdot\left[\left(V_{G S}+V_{P}\right)-\frac{V_{D S}}{2}\right]}
$$

FET as resistance control: variable frequency filter

- variably controlled resistance in an low (or high) pass filter
- Dynamical adjustment of cut off frequency

FET switch based on MOFSET

\bullet Based on a voltage divider $\quad v_{\text {OUT }}=\frac{47 k \Omega}{R_{D S}+47 k \Omega} v_{i n}$

- When gate at ground

$$
R_{D S}>10^{10} \Omega \Rightarrow v_{\text {OUT }} \approx 0
$$

- When gate at +15 V

$$
R_{D S} \approx 100 \Omega \Rightarrow v_{\text {OUT }} \approx v_{i n}
$$

FET switch based on MOFSET: example of application

